Presence of integrons and their correlation with multidrug resistance in Salmonella enterica serovar Typhimurium: Exploratory systematic review
Abstract
In Salmonella enterica serovar Typhimurium (Typhimurium), multidrug resistance is associated with integrons carrying resistance genes dispersed by mobile genetic elements. This exploratory systematic review sought to identify integron types and their resistance genes in multidrug resistance Typhimurium isolates. We used Medline, PubMed, SciELO, ScienceDirect, Redalyc, and Google Scholar as motor searchers for articles in Spanish or English published between 2012 and 2020, including the keywords “integrons”, “antibiotic resistance”, and “Salmonella Typhimurium”. We included 38 articles reporting multidrug resistance up to five antibiotic families.
Class 1 integrons with aadA2 and blaPSE-1 gene cassettes were predominant, some probably related to the Salmonella genomic island 1. We did not find studies detailing class 1 and 2 integrons in the same isolate, nor class 3 integrons reported. The presence of integrons largely explains the resistance profiles found in isolates from different sources in 15 countries.
Downloads
References
Center for Disease Control and Prevention. CDC yellow book 2020: Health information for international travel. Brunette GW, Nemhauser JB, editors. New York: Oxford University Press; 2019. https://doi.org/10.1093/med/9780190928933.001.0001
World Health Organization, Food and Agriculture Organization of the United Nations. INFOSAN activity report 2018-2019. World Health Organization, editor. Geneva: World Health Organization; 2020. p. 76.
McQuiston JR, Herrera-Leon S, Wertheim BC, Doyle J, Fields PI, Tauxe RV, et al. Molecular phylogeny of the salmonellae: Relationships among Salmonella species and subspecies determined from four housekeeping genes and evidence of lateral gene transfer events. J Bacteriol. 2008;190:7060-7. https://doi.org/10.1128/JB.01552-07
Organización Mundial de la Salud. Salmonella (no tifoidea). 2018. Fecha de consulta: 21 de agosto de 2019. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/salmonella-%28non-typhoidal%29
Rabsch W, Andrews HL, Kingsley RA, Prager R, Tschäpe H, Adams LG, et al. Salmonella enterica serotype Typhimurium and its host-adapted variants. Infect Immun. 2002;70:2249-55. https://doi.org/10.1128/IAI.70.5.2249-2255.2002
Leekitcharoenphon P, Hendriksen RS, Le Hello S, Weill F-X, Baggesen DL, Jun S-R, et al. Global genomic epidemiology of Salmonella enterica serovar Typhimurium DT104. Appl Environ Microbiol. 2016;82:2516-26. https://doi.org/10.1128/AEM.03821-15
Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE, Gordon MA, et al. Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res. 2009;19:2279-87. https://doi.org/10.1101/gr.091017.109
Wang X, Biswas S, Paudyal N, Pan H, Li X, Fang W, et al. Antibiotic resistance in Salmonella Typhimurium isolates recovered from the food chain through national antimicrobial resistance monitoring system between 1996 and 2016. Front Microbiol. 2019;10:985. https://doi.org/10.3389/fmicb.2019.00985
Deng Y, Bao X, Ji L, Chen L, Liu J, Miao J, et al. Resistance integrons: Class 1, 2 and 3 integrons. Ann Clin Microbiol Antimicrob. 2015;14:45. https://doi.org/10.1186/s12941-015-0100-6
Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018;31. https://doi.org/10.1128/CMR.00088-17
Okoro CK, Kingsley RA, Connor TR, Harris SR, Parry CM, Al-Mashhadani MN, et al. Intracontinental spread of human invasive Salmonella Typhimurium pathovariants in sub-Saharan Africa. Nat Genet. 2012;44:1215-21. https://doi.org/10.1038/ng.2423
Monte DFM, Sellera FP, Lopes R, Keelara S, Landgraf M, Greene S, et al. Class 1 integronborne cassettes harboring blaCARB-2 gene in multidrug-resistant and virulent Salmonella Typhimurium ST19 strains recovered from clinical human stool samples, United States. PLoS ONE. 2020;15:e0240978. https://doi.org/10.1371/journal.pone.0240978
Maldonado NA, Múnera MI, López JA, Sierra P, Robledo CG, Robledo J, et al. Tendencias de la resistencia a antibióticos en Medellín y municipios del Área Metropolitana entre 2007-2012: resultados de seis años de vigilancia. Biomédica. 2014;34:433-46. https://doi.org/10.7705/biomedica.v34i3.1658
Instituto Nacional de Salud. Informe de Vigilancia por Laboratorio de Salmonella spp.: “Colombia 1997-2018.” Bogotá: Instituto Nacional de Salud; 2019. p. 25.
Ministerio de Salud y Protección Social. Plan Nacional de Respuesta a la resistencia a los antimicrobianos. Plan estratégico. Bogotá: Minsalud; 2018.
Arksey H, O’Malley L. Scoping studies: Towards a methodological framework. Int J Soc Res Methodol. 2005;8:19-32. https://doi.org/10.1080/1364557032000119616
Peters MDJ, Godfrey CM, Khalil H, McInerney P, Parker D, Soares CB. Guidance for conducting systematic scoping reviews. Int J Evid Based Healthc. 2015;13:141-6. https://doi.org/10.1097/XEB.0000000000000050
National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Foodborne, Waterborne, and Environmental Diseases (DFWED). Glossary of Terms Related to Antibiotic Resistance | NARMS | CDC [Internet]. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS). 2019. Fecha de consulta: 29 de octubre de 2023. Disponible en: https://www.cdc.gov/narms/resources/glossary.html
Rodríguez EC, Díaz-Guevara P, Moreno J, Bautista A, Montaño L, Realpe ME, et al. Laboratory surveillance of Salmonella enterica from human clinical cases in Colombia 2005-2011. Enferm Infecc Microbiol Clin. 2017;35:417-25. https://doi.org/10.1016/j.eimc.2016.02.023
Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6:e1000097. https://doi.org/10.1371/journal.pmed.1000097
Akinyemi KO, Ajoseh SO. Factors contributing to the emergence and spread of antibiotics resistance in salmonella species. In: Mares M, editor. Current topics in salmonella and salmonellosis. InTech; 2017. https://doi.org/10.5772/67701
Dessie HK, Bae DH, Lee YJ. Characterization of integrons and their cassettes in Escherichia coli and Salmonella isolates from poultry in Korea. Poult Sci. 2013;92:3036-43. https://doi.org/10.3382/ps.2013-03312
Roberts MC, Schwarz S. Tetracycline and phenicol resistance genes and mechanisms: Importance for agriculture, the environment, and humans. J Environ Qual. 2016;45:576-92. https://doi.org/10.2134/jeq2015.04.0207
Roberts MC. Tetracycline resistance determinants: Mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol Rev. 1996;19:1-24. https://doi.org/10.1111/j.1574-6976.1996.tb00251.x
White PA, McIver CJ, Rawlinson WD. Integrons and gene cassettes in the enterobacteriaceae. Antimicrob Agents Chemother. 2001;45:2658-61. https://doi.org/10.1128/AAC.45.9.2658-2661.2001
Leverstein-van Hall MA, Blok HEM, Donders RT, Paauw A, Fluit AC, Verhoef J. Multidrug resistance among Enterobacteriaceae is strongly associated with the presence of integrons and is independent of species or isolate origin. J Infect Dis. 2003;187:251-9. https://doi.org/10.1086/345880
Jia C, Wang Z, Huang C, Teng L, Zhou H, An H, et al. Mobilome-driven partitions of the resistome in Salmonella. mSystems. 2023;e0088323. https://doi.org/10.1128/msystems.00883-23
European Food Safety Authority, European Centre for Disease Prevention and Control. The European Union One Health 2019 zoonoses report. EFSA J. 2021;19:e06406. https://doi.org/10.2903/j.efsa.2021.6406
Simpson KMJ, Hill-Cawthorne GA, Ward MP, Mor SM. Diversity of Salmonella serotypes from humans, food, domestic animals and wildlife in New South Wales, Australia. BMC Infect Dis. 2018;18:623. https://doi.org/10.1186/s12879-018-3563-1
Lammie SL, Hughes JM. Antimicrobial resistance, food safety, and one health: The need for convergence. Annu Rev Food Sci Technol. 2016;7:287-312. https://doi.org/10.1146/annurev-food-041715-033251
World Health Organization. Global antimicrobial resistance surveillance system (GLASS) report: Early implementation 2017-2018. Geneva: World Health Organization; 2018. p. 164.
Anderson ES. Drug resistance in Salmonella Typhimurium and its implications. BMJ. 1968;3:333-9. https://doi.org/10.1136/bmj.3.5614.333
Huyan J, Tian Z, Zhang Y, Zhang H, Shi Y, Gillings MR, et al. Dynamics of class 1 integrons in aerobic biofilm reactors spiked with antibiotics. Environ Int. 2020;140:105816. https://doi.org/10.1016/j.envint.2020.105816
World Health Organization. Critically important antimicrobials for human medicine. 5th rev. Geneva: World Health Organization; 2017.
World Health Organization. Critically important antimicrobials for human medicine. 6th revision. Geneva: World Health Organization; 2019.
Guerra B, Soto S, Cal S, Mendoza MC. Antimicrobial resistance and spread of class 1 integrons among Salmonella serotypes. Antimicrob Agents Chemother. 2000;44:2166-9. https://doi.org/10.1128/AAC.44.8.2166-2169.2000
Madec JY, Doublet B, Ponsin C, Cloeckaert A, Haenni M. Extended-spectrum β-lactamase blaCTX-M-1 gene carried on an IncI1 plasmid in multidrug-resistant Salmonella enterica serovar Typhimurium DT104 in cattle in France. J Antimicrob Chemother. 2011;66:942-4. https://doi.org/10.1093/jac/dkr014
Gallardo F, Ruiz J, Soto SM, Jiménez de Anta MT, Vila J. Distintos mecanismos de resistencia asociados a integrones en aislamientos clínicos de Salmonella Typhimurium. Rev Esp Quimioter. 2003;16:398-402.
Partridge SR, Tsafnat G, Coiera E, Iredell JR. Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev. 2009;33:757-84. https://doi.org/10.1111/j.1574-6976.2009.00175.x
Pulecio-Santos S, Bermúdez-Duarte P, Suárez Alfonso MC. Susceptibilidad antimicrobiana de aislamientos de Salmonella enterica obtenidos del pre-beneficio y de porcinos en Colombia. Rev Salud Pública. 2015;17:106-19. https://doi.org/10.15446/rsap.v17n1.45716
O’Mahony R, Quinn T, Drudy D, Walsh C, Whyte P, Mattar S, et al. Antimicrobial resistance in nontyphoidal Salmonella from food sources in Colombia: Evidence for an unusual plasmid-localized class 1 integron in serotypes Typhimurium and Anatum. Microb Drug Resist. 2006;12:269-77. https://doi.org/10.1089/mdr.2006.12.269
Flórez-Delgado NY, Ubillus EN, Pérez-Sepúlveda B, Ospina-Ríos EL, Carrascal-Camacho AK, Chamorro-Tobar IC, et al. Class 1 integrons in clinical and swine industry isolates of Salmonella Typhimurium from Colombia, dating 1997 to 2017. J Med Microbiol. 2023;72. https://doi.org/10.1099/jmm.0.001704
Balsalobre LC, Dropa M, Matté MH. An overview of antimicrobial resistance and its public health significance. Braz J Microbiol. 2014;45:1-5. https://doi.org/10.1590/S1517-83822014005000033
Organización Mundial de la Salud. Lista OMS de antimicrobianos de importancia crítica para la medicina humana (lista OMS de AIC). Geneva: OMS; 2019. p. 2.
Some similar items:
- Elizabeth Peña, Janneth Zuñiga, An anatomical variation: the aberrant termination of the thoracic duct , Biomedica: Vol. 29 No. 2 (2009)
- Luz Elena Velásquez, Catalina Gómez, Erika Valencia, Laura Salazar, Eudoro Casas, Paragonimosis in the peri-urban zone of Medellín, Antioquia , Biomedica: Vol. 28 No. 3 (2008)
- Sandra Milena Arias, Lina Marcela Salazar, Eudoro Casas, Alexandra Henao, Luz Elena Velásquez, Paragonimus sp. in crabs and awareness of the educational community to aquatic ecosystems in La Miel and La Clara, Caldas, Antioquia , Biomedica: Vol. 31 No. 2 (2011)
- Jaiberth Cardona-Arias, Luz Peláez-Vanegas, Juan López-Saldarriaga, Marcela Duque-Molina, Oscar Leal-Álvarez, Health related quality of life in adults with HIV/AIDS in Colombia , Biomedica: Vol. 31 No. 4 (2011)
- Jacqueline Chaparro, Moisés Wasserrnanz, Modification of a Radiometric Microtest to detect Plasmodium falciparum Resistance to Several Drugs , Biomedica: Vol. 19 No. 1 (1999)
- Jacqueline Chaparro, Moisés Wasserman, Comparison of in vitro technlques for the detection of Plasmodium falciparum resistance to drugs , Biomedica: Vol. 19 No. 2 (1999)
- Eliana P. Calvo, María O. Rojas, Jacqueline Chaparro, Moisés Wasserman, Expresion of the multiple drug resistance associated gene (pfMDR 1) in Colombian strains of Plasmodium falciparum , Biomedica: Vol. 19 No. 3 (1999)
- Oscar G. Gómez, Attenuated Salmonella vaccine as a vector for heterologous antigens , Biomedica: Vol. 20 No. 2 (2000)
- Nélida Muñoz, Clara Inés Agudelo, Maria Victoria Ovalle, María Helena Realpe, Edilma Jaramillo, Sandra Núñez, Martha Uzeta, Vianney Portilla, María del Pilar Crespo, María Elena Alvarez, Constanza Sabogal, Mercedes Cano, María Claudia Rodríguez, María Eugenia Peláez, Lesli Bruzón, Mileny Arregocés, Gloria Patricia Londoño, Gloria Inés Dussán, Liliana Patiño, Alix Robinson, Surveillance of serotypes and antimicrobial susceptibility of Salmonellaspp., Shigella spp. and Vibrio cholerae O1, 1997-1999 , Biomedica: Vol. 20 No. 3 (2000)
- Catalina de Bedout, Julio Ayabaca, Ricardo Vega, Matilde Méndez, Axel R. Santiago, María Lucrecia Pabón, Angela Tabares, Myrtha Arango, Angela Restrepo, Vance Newell, Evaluation of Candida species' susceptibility to fluconazole with the disk diffusion method. , Biomedica: Vol. 23 No. 1 (2003)
Copyright (c) 2024 Biomedica

This work is licensed under a Creative Commons Attribution 4.0 International License.
| Article metrics | |
|---|---|
| Abstract views | |
| Galley vies | |
| PDF Views | |
| HTML views | |
| Other views | |










