Micología de desastres
Resumen
Los desastres naturales o los causados por el hombre impactan la formación de ecosistemas y comunidades microbianas, y también afectan las formas de vida no microbianas. Este concepto es conocido como “microbiología de desastres”, una subespecialización de la microbiología, basada en los cambios ambientales generados por un desastre y las posibles adaptaciones o alteraciones de las poblaciones microbianas –crecimiento, muerte, trasporte a una nueva región, o adquisición de resistencia o de nuevas características– que influirán en el moldeamiento del ecosistema transformado. Algunos de los efectos de estas adaptaciones pueden ser: el surgimiento de poblaciones microbianas, la habilidad de colonizar nuevos nichos u huéspedes, la generación de nuevas enfermedades, o el crecimiento de microorganismos en condiciones que antes eran “extremas” para ellos.
A lo largo de la historia, varias poblaciones de hongos han sido afectadas por desastres. Existen registros arqueológicos prehistóricos que evidencian la presencia y el crecimiento de hongos luego del impacto de asteroides, y otros de hongos relacionados con la extinción de los dinosaurios. Actualmente, las sequías y las tormentas de polvo causan perturbaciones en las comunidades de hongos del suelo, y los huracanes inducen el crecimiento de hongos filamentosos en superficies húmedas, lo que aumenta la cantidad de enfermedades por hongos. Además, con el aumento de las temperaturas extremas es posible que los hongos puedan adaptarse para sobrevivir a temperaturas más altas, equivalentes a las temperaturas corporales, y nuevas especies puedan infectar mamíferos. Esto puede llevar a un aumento drástico de las infecciones fúngicas en humanos.
Descargas
Referencias bibliográficas
Smith DFQ, Casadevall A. Disaster microbiology—a new field of study. mBio. 2022;13:e01680-22. https://doi.org/10.1128/mbio.01680-22
American Society for Microbiology. Microbes and Climate Change – Science, People & Impacts: Report on an American Academy of Microbiology Virtual Colloquium held on Nov. 5, 2021. Washington, D.C.: American Society for Microbiology; 2022. Consulted: May 1st, 2022. Available from: https://asm.org/Reports/Microbes-Climate-Change-Science,-People,-Impacts
Berbee ML, Strullu-Derrien C, Delaux PM, Strother PK, Kenrick P, Selosse MA, et al. Genomic and fossil windows into the secret lives of the most ancient fungi. Nat Rev Microbiol. 2020;18:717-30. https://doi.org/10.1038/s41579-020-0426-8
Ivarsson M, Broman C, Sturkell E, Ormö J, Siljeström S, van Zuilen M, et al. Fungal colonization of an Ordovician impact-induced hydrothermal system. Sci Rep. 2013;3:3487. https://doi.org/10.1038/srep03487
Rampino MR, Eshet Y. The fungal and acritarch events as time markers for the latest Permian mass extinction: An update. Geoscience Frontiers. 2018;9:147-54. https://doi.org/10.1016/j.gsf.2017.06.005
Steiner MB, Eshet Y, Rampino MR, Schwindt DM. Fungal abundance spike and the Permian-Triassic boundary in the Karoo Supergroup (South Africa). Palaeogeogr Palaeoclimatol Palaeoecol. 2003;194:405-14. https://doi.org/10.1016/S0031-0182(03)00230-X
Hochuli PA. Interpretation of “fungal spikes” in Permian-Triassic boundary sections. Glob Planet Change. 2016;144:48-50. https://doi.org/10.1016/j.gloplacha.2016.05.002
Visscher H, Sephton MA, Looy CV. Fungal virulence at the time of the end Permian biosphere crisis? Geology. 2011;39:883-6. https://doi.org/10.1130/G32178.1
Gueidan C, Ruibal C, de Hoog GS, Schneider H. Rock-inhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic. Fungal Biol. 2011;115:987-96. https://doi.org/10.1016/j.funbio.2011.04.002
Vajda V, McLoughlin S. Fungal proliferation at the Cretaceous-Tertiary boundary. Science. 2004;303:1489. https://doi.org/10.1126/science.1093807
Casadevall A. Fungal virulence, vertebrate endothermy, and dinosaur extinction: Is there a connection? Fungal Genet Biol. 2005;42:98-106. https://doi.org/10.1016/j.fgb.2004.11.008
Casadevall A. Fungi and the rise of mammals. PLOS Pathog. 2012;8:e1002808. https://doi.org/10.1371/journal.ppat.1002808
Casadevall A, Damman C. Updating the fungal infection-mammalian selection hypothesis at the end of the Cretaceous Period. PLOS Pathog. 2020;16:e1008451. https://doi.org/10.1371/journal.ppat.1008451
Gillooly JF, Allen AP, Charnov EL. Dinosaur fossils predict body temperatures. PLOS Biol. 2006;4:e248. https://doi.org/10.1371/journal.pbio.0040248
Grady JM, Enquist BJ, Dettweiler-Robinson E, Wright NA, Smith FA. Evidence for mesothermy in dinosaurs. Science. 2014;344:1268-72. https://doi.org/10.1126/science.1253143
Robert VA, Casadevall A. Vertebrate endothermy restricts most fungi as potential pathogens. J Infect Dis. 2009;200:1623-6. https://doi.org/10.1086/644642
Woodruff DC, Wolff EDS, Wedel MJ, Dennison S, Witmer LM. The first occurrence of an avian-style respiratory infection in a non-avian dinosaur. Sci Rep. 2022;12:1954. https://doi.org/10.1038/s41598-022-05761-3
Marr JS, Malloy CD. An epidemiologic analysis of the ten plagues of Egypt. Caduceus. 1996;12:724.
Marr JS, Malloy CD. Effects of mycotoxins in health and disease. JAMA. 1997;278:1062-3. https://doi.org/1010.1001/jama.278.13.1062
Casadevall A. Climate change brings the specter of new infectious diseases. J Clin Invest. 2020;130:553-5. https://doi.org/10.1172/JCI135003
Filippini T, Hatch EE, Rothman KJ, Heck JE, Park AS, Crippa A, et al. Association between outdoor air pollution and childhood leukemia: A systematic review and dose–response metaanalysis. Environ Health Perspect. 2019;127:46002. https://doi.org/10.1289/EHP4381
Yu CL, Wang SF, Pan PC, Wu MT, Ho CK, Smith TJ, et al. Residential exposure to petrochemicals and the risk of leukemia: Using geographic information system tools to estimate individual-level residential exposure. Am J Epidemiol. 2006;164:200-7. https://doi.org/10.1093/aje/kwj182
Pope III CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 2002;287:1132-41. https://doi.org/10.1001/jama.287.9.1132
Bizzozero OJ, Johnson KG, Ciocco A, Hoshino T, Itoga T, Toyoda S, et al. Radiation-related leukemia in Hiroshima and Nagasaki, 1946-1964. N Engl J Med. 1966;274:1095-101. https://doi.org/10.1056/NEJM196605192742001
Gluzman D, Imamura N, Sklyarenko L, Nadgornaya V, Zavelevich M, Machilo V. Patterns of hematological malignancies in Chernobyl clean-up workers (1996-2005). Exp Oncol. 2006;28:60-3.
Koval SV, Gluzman DF, Sklyarenko LM, Ivanivska TS, Zavelevich MP, Philchenkov AA, et al. Hematological malignancies in Ukraine in post-Chernobyl era: Sources of data and their preliminary analysis. Ann Hematol. 2020;99:1543-50. https://doi.org/10.1007/s00277-020-04076-5
Pagano L, Caira M, Candoni A, Offidani M, Fianchi L, Martino B, et al. The epidemiology of fungal infections in patients with hematologic malignancies: The SEIFEM-2004 study. Haematologica. 2006;91:1068-75.
Mor M, Gilad G, Kornreich L, Fisher S, Yaniv I, Levy I. Invasive fungal infections in pediatric oncology. Pediatr Blood Cancer. 2011;56:1092-7. https://doi.org/10.1002/pbc.23005
Federal Emergency Management Agency. Natural hazards. National risk index. Consulted: Jan 6, 2023. Available from: https://hazards.fema.gov/nri/natural-hazards
Rubeis VD, Lee J, Anwer MS, Yoshida-Montezuma Y, Andreacchi AT, Stone E, et al. Impact of disasters, including pandemics, on cardiometabolic outcomes across the lifecourse: A systematic review. BMJ Open. 2021;11:e047152. https://doi.org/110.1136/bmjopen-2020-047152
Jaffe HW, Bregman DJ, Selik RM. Acquired immune deficiency syndrome in the United States: The First 1,000 Cases. J Infect Dis. 1983;148:339-45. https://doi.org/10.1093/infdis/148.2.339
Armstrong-James D, Meintjes G, Brown GD. A neglected epidemic: fungal infections in HIV/AIDS. Trends Microbiol. 2014;22:120-7. https://doi.org/10.1016/j.tim.2014.01.001
Basile K, Halliday C, Kok J, Chen SCA. Fungal infections other than invasive aspergillosis in COVID-19 patients. J Fungi (Basel). 2022;8:58. https://doi.org/10.3390/jof8010058
Hoenigl M, Seidel D, Sprute R, Cunha C, Oliverio M, Goldman GH, et al. COVID19-associated fungal infections. Nat Microbiol. 2022;7:1127-40. https://doi.org/10.1038/s41564-022-01172-2
Prattes J, Wauters J, Giacobbe DR, Salmanton-García J, Maertens J, Bourgeois M, et al. Risk factors and outcome of pulmonary aspergillosis in critically ill coronavirus disease 2019 patients – a multinational observational study by the European Confederation of Medical Mycology. Clin Microbiol Infect. 2022;28:580-7. https://doi.org/10.1016/j.cmi.2021.08.014
Gold JAW, Ahmad FB, Cisewski JA, Rossen LM, Montero AJ, Benedict K, et al. Increased deaths from fungal infections during the COVID-19 pandemic—National Vital Statistics System, United States, January 2020–December 2021. Clin Infect Dis. 2022;ciac489. https://doi.org/10.1093/cid/ciac489
Centers for Disease Control and Prevention. Increase in coccidioidomycosis--Arizona, 1998-2001. MMWR Morb Mortal Wkly Rep. 2003;52:109-12.
Flynn NM, Hoeprich PD, Kawachi MM, Lee KK, Lawrence RM, Goldstein E, et al. An unusual outbreak of windborne coccidioidomycosis. N Engl J Med. 1979;301:358-61. https://doi.org/10.1056/NEJM197908163010705
Schneider E, Hajjeh RA, Spiegel RA, Jibson RW, Harp EL, Marshall GA, et al. A Coccidioidomycosis outbreak following the Northridge, Calif, Earthquake. JAMA. 1997;277:904-8
Fanfair RN, Benedict K, Bos J, Bennett SD, Lo YC, Adebanjo T, et al. Necrotizing cutaneous mucormycosis after a Tornado in Joplin, Missouri, in 2011. N Engl J Med 2012;367:2214-25. https://doi.org/10.1056/NEJMoa1204781
Kawakami Y, Tagami T, Kusakabe T, Kido N, Kawaguchi T, Omura M, et al. Disseminated aspergillosis associated with Tsunami lung. Respir Care. 2012;57:1674-8. https://doi.org/10.4187/respcare.01701
Benedict K, Park BJ. Invasive fungal infections after natural disasters. Emerg Infect Dis. 2014;20:349-55. https://doi.org/10.3201/eid2003.131230
Engelthaler DM, Casadevall A. On the emergence of Cryptococcus gattii in the Pacific Northwest: Ballast tanks, tsunamis, and black swans. mBio. 2019;10:e02193-19. https://doi.org/10.1128/mBio.02193-19
Espinel-Ingroff A, Kidd SE. Current trends in the prevalence of Cryptococcus gattii in the United States and Canada. Infect Drug Resist. 2015;8:89-97. https://doi.org/10.2147/IDR.S57686
Vélez-Torres LN, Bolaños-Rosero B, Godoy-Vitorino F, Rivera-Mariani FE, Maestre JP, Kinney K, et al. Hurricane María drives increased indoor proliferation of filamentous fungi in San Juan, Puerto Rico: A two-year culture-based approach. Peer J. 2022;10:e12730. https://doi.org/10.7717/peerj.12730
Cummings KJ, Cox-Ganser J, Riggs MA, Edwards N, Hobbs GR, Kreiss K. Health effects of exposure to water-damaged New Orleans homes six months after hurricanes Katrina and Rita. Am J Public Health. 2008;98:869-75. https://doi.org/10.2105/AJPH.2007.118398
Bolaños-Rosero B, Hernández-González X, Cavallín-Calanche HE, GodoyVitorino F, Vesper S. Impact of hurricane Maria on mold levels in the homes of Piñones, Puerto Rico. Air Qual Atmos Health. 2022;16:661-668. https://doi.org/10.1007/s11869-022-01297-7
Toda M, Williams S, Jackson BR, Wurster S, Serpa JA, Nigo M, et al. Invasive mold infections following Hurricane Harvey — Houston, Texas. Open Forum Infect Dis. 2023;10:ofad093. https://doi.org/10.1093/ofid/ofad093
Tal A. Pollution in a promised land: An environmental history of Israel. Pollution in a Promised Land. University of California Press; 2002. Consulted: Jan 7, 2023. Available from: https://www.degruyter.com/document/doi/10.1525/9780520936492/html
The Times of Israel. 25 years later, today’s Australian delegation remembers the Maccabiah Bridge tragedy. Consulted: Jan 7, 2023. Available from: https://www.timesofisrael.com/25-years-later-todays-australian-delegation-remembers-the-maccabiah-bridge-tragedy/
Gunaratne PS, Wijeyaratne CN, Chandrasiri P, Sivakumaran S, Sellahewa K, Perera P, et al. An outbreak of Aspergillus meningitis following spinal anaesthesia for caesarean section in Sri Lanka: a post-tsunami effect. Ceylon Med J. 2006;51:137-42. https://doi.org/10.4038/cmj.v51i4.1142
Smith RM, Derado G, Wise M, Harris JR, Chiller T, Meltzer MI, et al. Estimated deaths and illnesses averted during fungal meningitis outbreak associated with contaminated steroid injections, United States, 2012–2013. Emerg Infect Dis. 2015;21:933-40. https://doi.org/10.3201/eid2106.141558
Smith RM, Schaefer MK, Kainer MA, Wise M, Finks J, Duwve J, et al. Fungal infections associated with contaminated methylprednisolone injections. N Engl J Med. 2013;369:1598-609. https://doi.org/10.1056/NEJMoa1213978
Secretaría de Salud Gobierno de México. Comunicado Técnico Diario Meningitis Histórico 2022. Consulted: Jan 8, 2023. Available from: http://www.gob.mx/salud/documentos/comunicado-tecnico-diario-meningitis-historico-2022
Mora C, McKenzie T, Gaw IM, Dean JM, von Hammerstein H, Knudson TA, et al. Over half of known human pathogenic diseases can be aggravated by climate change. Nat Clim Chang. 2022;12:869-75. https://doi.org/10.1038/s41558-022-01426-1
Baker RE, Mahmud AS, Miller IF, Rajeev M, Rasambainarivo F, Rice BL, et al. Infectious disease in an era of global change. Nat Rev Microbiol. 2022;20:193-205. https://doi.org/10.1038/s41579-021-00639-z
Gorris ME, Treseder KK, Zender CS, Randerson JT. Expansion of coccidioidomycosis endemic regions in the United States in response to climate change. GeoHealth. 2019;3:308-27. https://doi.org/10.1029/2019GH000209
Casadevall A, Kontoyiannis DP, Robert V. On the emergence of Candida auris: Climate change, azoles, swamps, and birds. mBio. 2019;10: e01397-19. https://doi.org/10.1128/mBio.01397-19
Gange AC, Gange EG, Mohammad AB, Boddy L. Host shifts in fungi caused by climate change? Fungal Ecology. 2011;4:184-90.
Garcia-Solache MA, Casadevall A. Global warming will bring new fungal diseases for mammals. mBio. 2010;1:e00061-10. https://doi.org/10.1128/mBio.00061-10
Robert V, Cardinali G, Casadevall A. Distribution and impact of yeast thermal tolerance permissive for mammalian infection. BMC Biol. 2015;13:18. https://doi.org/10.1186/s12915-015-0127-3
Chow NA, Muñoz JF, Gade L, Berkow EL, Li X, Welsh RM, et al. Tracing the evolutionary history and global expansion of Candida auris using population genomic analyses. mBio. 2020;11:e03364-19. https://doi.org/10.1128/mBio.03364-19
Duarte-Escalante E, Reyes-Montes M del R, Frías-De-León MG, Meraz-Ríos B. Effect of climate change on the incidence and geographical distribution of coccidioidomycosis. In: Frías-De-León MG, Brunner-Mendoza C, Reyes-Montes M del R, Duarte-Escalante E, editors. The impact of climate change on fungal diseases. Cham: Springer International Publishing; 2022. p. 131-43. Consulted: Jan 8, 2023. Available from: https://doi.org/10.1007/978-3-030-89664-5_8
Vanderbeke L, Spriet I, Breynaert C, Rijnders BJA, Verweij PE, Wauters J. Invasive pulmonary aspergillosis complicating severe influenza: Epidemiology, diagnosis and treatment. Curr Opin Infect Dis. 2018;31:471. https://doi.org/10.1097/QCO.0000000000000504
Knutson TR, McBride JL, Chan J, Emanuel K, Holland G, Landsea C, et al. Tropical cyclones and climate change. Nature Geosci. 2010;3:157-63.
Walsh KJE, McBride JL, Klotzbach PJ, Balachandran S, Camargo SJ, Holland G, et al. Tropical cyclones and climate change. WIREs Climate Change. 2016;7:65-89.
Algunos artículos similares:
- Catalina de Bedout, Julio Ayabaca, Ricardo Vega, Matilde Méndez, Axel R. Santiago, María Lucrecia Pabón, Angela Tabares, Myrtha Arango, Angela Restrepo, Vance Newell, Evaluación de la susceptibilidad de especies de Candida al fluconazol por el método de difusión de disco. , Biomédica: Vol. 23 Núm. 1 (2003)
- Matilde Anaya, Eduardo Barbará, Jesús Padrón, Sofía F. Borrego, Oderlaise Valdés, Alian Molina, Influencia del campo magnético sobre el crecimiento de microorganismos patógenos ambientales aislados en el Archivo Nacional de la República de Cuba , Biomédica: Vol. 35 Núm. 3 (2015)
- Javier Araiza , Valentín Sánchez-Pedraza, Ana Karen Carrillo , Denise Fernández-Samar, Jazmín Tejeda, Alexandro Bonifaz, Candidiasis oral mixta en pacientes con diabetes de tipo 2: identificación y espectro de sensibilidad , Biomédica: Vol. 43 Núm. Sp. 1 (2023): Agosto, Micología médica
- Martha Puello, Gregorio Young, Paola Suárez, Actividad de fosfolipasas y proteasas en aislamientos de especies de Candida colonizadoras y causantes de vulvovaginitis en mujeres gestantes , Biomédica: Vol. 43 Núm. Sp. 1 (2023): Agosto, Micología médica
- Paola Marsela Pérez-Camacho, Carmen Vargas-Moran, Laura Torres-Cánchala , Camila Ariza-Insignares , Lina M. Sandoval-Calle , Inés Elvira Gómez-Hernández , Paula Solís-Núñez, Juliana V. Cedeño-Castaño, Ana M. Aguilar-González, Jaime Alberto Patiño-Niño, Características epidemiológicas de pacientes pediátricos con candidiasis invasora en una unidad de cuidados intensivos del suroccidente colombiano. , Biomédica: Vol. 45 Núm. 2 (2025): Publicación anticipada, junio

Derechos de autor 2023 Biomédica

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Estadísticas de artículo | |
---|---|
Vistas de resúmenes | |
Vistas de PDF | |
Descargas de PDF | |
Vistas de HTML | |
Otras vistas |
Datos de los fondos
-
National Institute of Allergy and Infectious Diseases
Números de la subvención R01 AI162381;R01 AI152078;T32 AI007417 -
National Heart, Lung, and Blood Institute
Números de la subvención R01 HL059842