Disaster mycology
Abstract
Natural and human-made disasters have long played a role in shaping the environment and microbial communities, also affecting non-microbial life on Earth. Disaster microbiology is a new concept based on the notion that a disaster changes the environment causing adaptation or alteration of microbial populations –growth, death, transportation to a new area, development traits, or resistance– that can have downstream effects on the affected ecosystem. Such downstream effects include blooms of microbial populations and the ability to colonize a new niche or host, cause disease, or survive in former extreme conditions.
Throughout history, fungal populations have been affected by disasters. There are prehistoric archeological records of fungal blooms after asteroid impacts and fungi implicated in the fall of the dinosaurs. In recent times, drought and dust storms have caused disturbance of soil fungi, and hurricanes have induced the growth of molds on wet surfaces, resulting in an increased incidence of fungal disease. Probably, the anticipated increase in extreme heat would force fungi adaptation to survive at high temperatures, like those in the human body, and thus be able to infect mammals. This may lead to a drastic rise of new fungal diseases in humans.
Downloads
References
Smith DFQ, Casadevall A. Disaster microbiology—a new field of study. mBio. 2022;13:e01680-22. https://doi.org/10.1128/mbio.01680-22
American Society for Microbiology. Microbes and Climate Change – Science, People & Impacts: Report on an American Academy of Microbiology Virtual Colloquium held on Nov. 5, 2021. Washington, D.C.: American Society for Microbiology; 2022. Consulted: May 1st, 2022. Available from: https://asm.org/Reports/Microbes-Climate-Change-Science,-People,-Impacts
Berbee ML, Strullu-Derrien C, Delaux PM, Strother PK, Kenrick P, Selosse MA, et al. Genomic and fossil windows into the secret lives of the most ancient fungi. Nat Rev Microbiol. 2020;18:717-30. https://doi.org/10.1038/s41579-020-0426-8
Ivarsson M, Broman C, Sturkell E, Ormö J, Siljeström S, van Zuilen M, et al. Fungal colonization of an Ordovician impact-induced hydrothermal system. Sci Rep. 2013;3:3487. https://doi.org/10.1038/srep03487
Rampino MR, Eshet Y. The fungal and acritarch events as time markers for the latest Permian mass extinction: An update. Geoscience Frontiers. 2018;9:147-54. https://doi.org/10.1016/j.gsf.2017.06.005
Steiner MB, Eshet Y, Rampino MR, Schwindt DM. Fungal abundance spike and the Permian-Triassic boundary in the Karoo Supergroup (South Africa). Palaeogeogr Palaeoclimatol Palaeoecol. 2003;194:405-14. https://doi.org/10.1016/S0031-0182(03)00230-X
Hochuli PA. Interpretation of “fungal spikes” in Permian-Triassic boundary sections. Glob Planet Change. 2016;144:48-50. https://doi.org/10.1016/j.gloplacha.2016.05.002
Visscher H, Sephton MA, Looy CV. Fungal virulence at the time of the end Permian biosphere crisis? Geology. 2011;39:883-6. https://doi.org/10.1130/G32178.1
Gueidan C, Ruibal C, de Hoog GS, Schneider H. Rock-inhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic. Fungal Biol. 2011;115:987-96. https://doi.org/10.1016/j.funbio.2011.04.002
Vajda V, McLoughlin S. Fungal proliferation at the Cretaceous-Tertiary boundary. Science. 2004;303:1489. https://doi.org/10.1126/science.1093807
Casadevall A. Fungal virulence, vertebrate endothermy, and dinosaur extinction: Is there a connection? Fungal Genet Biol. 2005;42:98-106. https://doi.org/10.1016/j.fgb.2004.11.008
Casadevall A. Fungi and the rise of mammals. PLOS Pathog. 2012;8:e1002808. https://doi.org/10.1371/journal.ppat.1002808
Casadevall A, Damman C. Updating the fungal infection-mammalian selection hypothesis at the end of the Cretaceous Period. PLOS Pathog. 2020;16:e1008451. https://doi.org/10.1371/journal.ppat.1008451
Gillooly JF, Allen AP, Charnov EL. Dinosaur fossils predict body temperatures. PLOS Biol. 2006;4:e248. https://doi.org/10.1371/journal.pbio.0040248
Grady JM, Enquist BJ, Dettweiler-Robinson E, Wright NA, Smith FA. Evidence for mesothermy in dinosaurs. Science. 2014;344:1268-72. https://doi.org/10.1126/science.1253143
Robert VA, Casadevall A. Vertebrate endothermy restricts most fungi as potential pathogens. J Infect Dis. 2009;200:1623-6. https://doi.org/10.1086/644642
Woodruff DC, Wolff EDS, Wedel MJ, Dennison S, Witmer LM. The first occurrence of an avian-style respiratory infection in a non-avian dinosaur. Sci Rep. 2022;12:1954. https://doi.org/10.1038/s41598-022-05761-3
Marr JS, Malloy CD. An epidemiologic analysis of the ten plagues of Egypt. Caduceus. 1996;12:724.
Marr JS, Malloy CD. Effects of mycotoxins in health and disease. JAMA. 1997;278:1062-3. https://doi.org/1010.1001/jama.278.13.1062
Casadevall A. Climate change brings the specter of new infectious diseases. J Clin Invest. 2020;130:553-5. https://doi.org/10.1172/JCI135003
Filippini T, Hatch EE, Rothman KJ, Heck JE, Park AS, Crippa A, et al. Association between outdoor air pollution and childhood leukemia: A systematic review and dose–response metaanalysis. Environ Health Perspect. 2019;127:46002. https://doi.org/10.1289/EHP4381
Yu CL, Wang SF, Pan PC, Wu MT, Ho CK, Smith TJ, et al. Residential exposure to petrochemicals and the risk of leukemia: Using geographic information system tools to estimate individual-level residential exposure. Am J Epidemiol. 2006;164:200-7. https://doi.org/10.1093/aje/kwj182
Pope III CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 2002;287:1132-41. https://doi.org/10.1001/jama.287.9.1132
Bizzozero OJ, Johnson KG, Ciocco A, Hoshino T, Itoga T, Toyoda S, et al. Radiation-related leukemia in Hiroshima and Nagasaki, 1946-1964. N Engl J Med. 1966;274:1095-101. https://doi.org/10.1056/NEJM196605192742001
Gluzman D, Imamura N, Sklyarenko L, Nadgornaya V, Zavelevich M, Machilo V. Patterns of hematological malignancies in Chernobyl clean-up workers (1996-2005). Exp Oncol. 2006;28:60-3.
Koval SV, Gluzman DF, Sklyarenko LM, Ivanivska TS, Zavelevich MP, Philchenkov AA, et al. Hematological malignancies in Ukraine in post-Chernobyl era: Sources of data and their preliminary analysis. Ann Hematol. 2020;99:1543-50. https://doi.org/10.1007/s00277-020-04076-5
Pagano L, Caira M, Candoni A, Offidani M, Fianchi L, Martino B, et al. The epidemiology of fungal infections in patients with hematologic malignancies: The SEIFEM-2004 study. Haematologica. 2006;91:1068-75.
Mor M, Gilad G, Kornreich L, Fisher S, Yaniv I, Levy I. Invasive fungal infections in pediatric oncology. Pediatr Blood Cancer. 2011;56:1092-7. https://doi.org/10.1002/pbc.23005
Federal Emergency Management Agency. Natural hazards. National risk index. Consulted: Jan 6, 2023. Available from: https://hazards.fema.gov/nri/natural-hazards
Rubeis VD, Lee J, Anwer MS, Yoshida-Montezuma Y, Andreacchi AT, Stone E, et al. Impact of disasters, including pandemics, on cardiometabolic outcomes across the lifecourse: A systematic review. BMJ Open. 2021;11:e047152. https://doi.org/110.1136/bmjopen-2020-047152
Jaffe HW, Bregman DJ, Selik RM. Acquired immune deficiency syndrome in the United States: The First 1,000 Cases. J Infect Dis. 1983;148:339-45. https://doi.org/10.1093/infdis/148.2.339
Armstrong-James D, Meintjes G, Brown GD. A neglected epidemic: fungal infections in HIV/AIDS. Trends Microbiol. 2014;22:120-7. https://doi.org/10.1016/j.tim.2014.01.001
Basile K, Halliday C, Kok J, Chen SCA. Fungal infections other than invasive aspergillosis in COVID-19 patients. J Fungi (Basel). 2022;8:58. https://doi.org/10.3390/jof8010058
Hoenigl M, Seidel D, Sprute R, Cunha C, Oliverio M, Goldman GH, et al. COVID19-associated fungal infections. Nat Microbiol. 2022;7:1127-40. https://doi.org/10.1038/s41564-022-01172-2
Prattes J, Wauters J, Giacobbe DR, Salmanton-García J, Maertens J, Bourgeois M, et al. Risk factors and outcome of pulmonary aspergillosis in critically ill coronavirus disease 2019 patients – a multinational observational study by the European Confederation of Medical Mycology. Clin Microbiol Infect. 2022;28:580-7. https://doi.org/10.1016/j.cmi.2021.08.014
Gold JAW, Ahmad FB, Cisewski JA, Rossen LM, Montero AJ, Benedict K, et al. Increased deaths from fungal infections during the COVID-19 pandemic—National Vital Statistics System, United States, January 2020–December 2021. Clin Infect Dis. 2022;ciac489. https://doi.org/10.1093/cid/ciac489
Centers for Disease Control and Prevention. Increase in coccidioidomycosis--Arizona, 1998-2001. MMWR Morb Mortal Wkly Rep. 2003;52:109-12.
Flynn NM, Hoeprich PD, Kawachi MM, Lee KK, Lawrence RM, Goldstein E, et al. An unusual outbreak of windborne coccidioidomycosis. N Engl J Med. 1979;301:358-61. https://doi.org/10.1056/NEJM197908163010705
Schneider E, Hajjeh RA, Spiegel RA, Jibson RW, Harp EL, Marshall GA, et al. A Coccidioidomycosis outbreak following the Northridge, Calif, Earthquake. JAMA. 1997;277:904-8
Fanfair RN, Benedict K, Bos J, Bennett SD, Lo YC, Adebanjo T, et al. Necrotizing cutaneous mucormycosis after a Tornado in Joplin, Missouri, in 2011. N Engl J Med 2012;367:2214-25. https://doi.org/10.1056/NEJMoa1204781
Kawakami Y, Tagami T, Kusakabe T, Kido N, Kawaguchi T, Omura M, et al. Disseminated aspergillosis associated with Tsunami lung. Respir Care. 2012;57:1674-8. https://doi.org/10.4187/respcare.01701
Benedict K, Park BJ. Invasive fungal infections after natural disasters. Emerg Infect Dis. 2014;20:349-55. https://doi.org/10.3201/eid2003.131230
Engelthaler DM, Casadevall A. On the emergence of Cryptococcus gattii in the Pacific Northwest: Ballast tanks, tsunamis, and black swans. mBio. 2019;10:e02193-19. https://doi.org/10.1128/mBio.02193-19
Espinel-Ingroff A, Kidd SE. Current trends in the prevalence of Cryptococcus gattii in the United States and Canada. Infect Drug Resist. 2015;8:89-97. https://doi.org/10.2147/IDR.S57686
Vélez-Torres LN, Bolaños-Rosero B, Godoy-Vitorino F, Rivera-Mariani FE, Maestre JP, Kinney K, et al. Hurricane María drives increased indoor proliferation of filamentous fungi in San Juan, Puerto Rico: A two-year culture-based approach. Peer J. 2022;10:e12730. https://doi.org/10.7717/peerj.12730
Cummings KJ, Cox-Ganser J, Riggs MA, Edwards N, Hobbs GR, Kreiss K. Health effects of exposure to water-damaged New Orleans homes six months after hurricanes Katrina and Rita. Am J Public Health. 2008;98:869-75. https://doi.org/10.2105/AJPH.2007.118398
Bolaños-Rosero B, Hernández-González X, Cavallín-Calanche HE, GodoyVitorino F, Vesper S. Impact of hurricane Maria on mold levels in the homes of Piñones, Puerto Rico. Air Qual Atmos Health. 2022;16:661-668. https://doi.org/10.1007/s11869-022-01297-7
Toda M, Williams S, Jackson BR, Wurster S, Serpa JA, Nigo M, et al. Invasive mold infections following Hurricane Harvey — Houston, Texas. Open Forum Infect Dis. 2023;10:ofad093. https://doi.org/10.1093/ofid/ofad093
Tal A. Pollution in a promised land: An environmental history of Israel. Pollution in a Promised Land. University of California Press; 2002. Consulted: Jan 7, 2023. Available from: https://www.degruyter.com/document/doi/10.1525/9780520936492/html
The Times of Israel. 25 years later, today’s Australian delegation remembers the Maccabiah Bridge tragedy. Consulted: Jan 7, 2023. Available from: https://www.timesofisrael.com/25-years-later-todays-australian-delegation-remembers-the-maccabiah-bridge-tragedy/
Gunaratne PS, Wijeyaratne CN, Chandrasiri P, Sivakumaran S, Sellahewa K, Perera P, et al. An outbreak of Aspergillus meningitis following spinal anaesthesia for caesarean section in Sri Lanka: a post-tsunami effect. Ceylon Med J. 2006;51:137-42. https://doi.org/10.4038/cmj.v51i4.1142
Smith RM, Derado G, Wise M, Harris JR, Chiller T, Meltzer MI, et al. Estimated deaths and illnesses averted during fungal meningitis outbreak associated with contaminated steroid injections, United States, 2012–2013. Emerg Infect Dis. 2015;21:933-40. https://doi.org/10.3201/eid2106.141558
Smith RM, Schaefer MK, Kainer MA, Wise M, Finks J, Duwve J, et al. Fungal infections associated with contaminated methylprednisolone injections. N Engl J Med. 2013;369:1598-609. https://doi.org/10.1056/NEJMoa1213978
Secretaría de Salud Gobierno de México. Comunicado Técnico Diario Meningitis Histórico 2022. Consulted: Jan 8, 2023. Available from: http://www.gob.mx/salud/documentos/comunicado-tecnico-diario-meningitis-historico-2022
Mora C, McKenzie T, Gaw IM, Dean JM, von Hammerstein H, Knudson TA, et al. Over half of known human pathogenic diseases can be aggravated by climate change. Nat Clim Chang. 2022;12:869-75. https://doi.org/10.1038/s41558-022-01426-1
Baker RE, Mahmud AS, Miller IF, Rajeev M, Rasambainarivo F, Rice BL, et al. Infectious disease in an era of global change. Nat Rev Microbiol. 2022;20:193-205. https://doi.org/10.1038/s41579-021-00639-z
Gorris ME, Treseder KK, Zender CS, Randerson JT. Expansion of coccidioidomycosis endemic regions in the United States in response to climate change. GeoHealth. 2019;3:308-27. https://doi.org/10.1029/2019GH000209
Casadevall A, Kontoyiannis DP, Robert V. On the emergence of Candida auris: Climate change, azoles, swamps, and birds. mBio. 2019;10: e01397-19. https://doi.org/10.1128/mBio.01397-19
Gange AC, Gange EG, Mohammad AB, Boddy L. Host shifts in fungi caused by climate change? Fungal Ecology. 2011;4:184-90.
Garcia-Solache MA, Casadevall A. Global warming will bring new fungal diseases for mammals. mBio. 2010;1:e00061-10. https://doi.org/10.1128/mBio.00061-10
Robert V, Cardinali G, Casadevall A. Distribution and impact of yeast thermal tolerance permissive for mammalian infection. BMC Biol. 2015;13:18. https://doi.org/10.1186/s12915-015-0127-3
Chow NA, Muñoz JF, Gade L, Berkow EL, Li X, Welsh RM, et al. Tracing the evolutionary history and global expansion of Candida auris using population genomic analyses. mBio. 2020;11:e03364-19. https://doi.org/10.1128/mBio.03364-19
Duarte-Escalante E, Reyes-Montes M del R, Frías-De-León MG, Meraz-Ríos B. Effect of climate change on the incidence and geographical distribution of coccidioidomycosis. In: Frías-De-León MG, Brunner-Mendoza C, Reyes-Montes M del R, Duarte-Escalante E, editors. The impact of climate change on fungal diseases. Cham: Springer International Publishing; 2022. p. 131-43. Consulted: Jan 8, 2023. Available from: https://doi.org/10.1007/978-3-030-89664-5_8
Vanderbeke L, Spriet I, Breynaert C, Rijnders BJA, Verweij PE, Wauters J. Invasive pulmonary aspergillosis complicating severe influenza: Epidemiology, diagnosis and treatment. Curr Opin Infect Dis. 2018;31:471. https://doi.org/10.1097/QCO.0000000000000504
Knutson TR, McBride JL, Chan J, Emanuel K, Holland G, Landsea C, et al. Tropical cyclones and climate change. Nature Geosci. 2010;3:157-63.
Walsh KJE, McBride JL, Klotzbach PJ, Balachandran S, Camargo SJ, Holland G, et al. Tropical cyclones and climate change. WIREs Climate Change. 2016;7:65-89.
Some similar items:
- Catalina de Bedout, Julio Ayabaca, Ricardo Vega, Matilde Méndez, Axel R. Santiago, María Lucrecia Pabón, Angela Tabares, Myrtha Arango, Angela Restrepo, Vance Newell, Evaluation of Candida species' susceptibility to fluconazole with the disk diffusion method. , Biomedica: Vol. 23 No. 1 (2003)
- Matilde Anaya, Eduardo Barbará, Jesús Padrón, Sofía F. Borrego, Oderlaise Valdés, Alian Molina, Influence of magnetic field on the growth of pathogen microorganisms isolated from the indoor environment at the Archivo Nacional de la República de Cuba , Biomedica: Vol. 35 No. 3 (2015)
- Javier Araiza , Valentín Sánchez-Pedraza, Ana Karen Carrillo , Denise Fernández-Samar, Jazmín Tejeda, Alexandro Bonifaz, Mixed oral candidiasis in type 2 diabetic patients: Identification and spectrum of sensitivity , Biomedica: Vol. 43 No. Sp. 1 (2023): Agosto, Micología médica
- Martha Puello, Gregorio Young, Paola Suárez, Phospholipase and proteinase activities of isolates of colonizing Candida spp. causing vulvovaginitis in pregnant women , Biomedica: Vol. 43 No. Sp. 1 (2023): Agosto, Micología médica
- Paola Marsela Pérez-Camacho, Carmen Vargas-Moran, Laura Torres-Cánchala , Camila Ariza-Insignares , Lina M. Sandoval-Calle , Inés Elvira Gómez-Hernández , Paula Solís-Núñez, Juliana V. Cedeño-Castaño, Ana M. Aguilar-González, Jaime Alberto Patiño-Niño, Epidemiological characteristics of pediatric patients with invasive candidiasis in an intensive care unit in Southwestern Colombia , Biomedica: Vol. 45 No. 2 (2025): Publicación anticipada, junio

Copyright (c) 2023 Biomedica

This work is licensed under a Creative Commons Attribution 4.0 International License.
Article metrics | |
---|---|
Abstract views | |
Galley vies | |
PDF Views | |
HTML views | |
Other views |
Funding data
-
National Institute of Allergy and Infectious Diseases
Grant numbers R01 AI162381;R01 AI152078;T32 AI007417 -
National Heart, Lung, and Blood Institute
Grant numbers R01 HL059842