Clinical-functional characterization of patients with spinal muscular atrophy in Central-Western Colombia
Abstract
Introduction: Spinal muscular atrophy is a rare genetic neurodegenerative disorder affecting the motor neurons of the anterior horn of the spinal cord, which results in muscle atrophy and weakness. In Colombia, few studies have been published on the pathology and none with functional analysis.
Objective: To characterize clinically and functionally some cases of spinal muscular atrophy patients from Central-Western Colombia.
Materials and methods: We conducted a cross-sectional descriptive study between 2007 and 2020 with patients clinically and molecularly diagnosed with spinal muscular atrophy who attended a care center. For the functional assessment we used the Hammersmith and Chop-Intend scales and the data were systematized with the Epi-Info, version 7.0 software.
Results: We analyzed 14 patients (42.8 % men). The most prevalent spinal muscular atrophy was type II with 71.4 %. We found phenotypic variability in terms of functionality in some patients with type II spinal muscular atrophy, 37.5 % of whom reached gait. Survival was estimated at 28.6 years.
Conclusions: The findings in the group of patients analyzed revealed that the scores of the revised and expanded Hammersmith scales correlated with the severity of SMA.
Downloads
References
Tizzano EF, Finkel RS. Spinal muscular atrophy: A changing phenotype beyond the clinical trials. Neuromuscular Disorders. 2017;27:883-9. https://doi.org/10.1016/j.nmd.2017.05.011
Valencia HD, Rendón Muñoz J, Pineda N, Ortiz B, Montoya JH, Cornejo JW. Características clínicas de los pacientes menores de 18 años con atrofia muscular espinal en Medellín, 2008 - 2013. Acta Neurol Colomb. 2015;32: 9-17
D’Amico A, Mercuri E, Tiziano FD, Bertini E. Spinal muscular atrophy. Orphanet J Rare Dis. 2011;6:71. https://doi.org/10.1186/1750-1172-6-71
Verhaart IEC, Robertson A, Wilson IJ, Aartsma-Rus A, Cameron S, Jones CC, et al. Prevalence, incidence and carrier frequency of 5q-linked spinal muscular atrophy - A literature review. Orphanet J Rare Dis. 2017;12:124. https://doi.org/10.1186/s13023-017-0671-8
Urrutia-Osorio ME, Ruiz-García M. Demographic and clinical profile in patients with spinal muscular atrophy: Series of 31 patients. Acta Pediatr Mex. 2020;41:47-57.
Eggermann K, Gläser D, Abicht A, Wirth B. Spinal muscular atrophy (5qSMA): Best practice of diagnostics, newborn screening and therapy. Medizinische Genet. 2020;32:263-72.
National Library of Medicine. SMN2 - survival of motor neuron 2, centromeric. 2008. Fecha de consulta: 6 de febrero de 2021. Disponible en: https://www.ncbi.nlm.nih.gov/kis/ortholog/6607/?scope=32524
Butchbach MER. Genomic variability in the survival motor neuron genes (SMN1 and SMN2): Implications for spinal muscular atrophy phenotype and therapeutics development. Int J Mol Sci. 2021;22:7896. https://doi.org/10.3390/ijms22157896
Febrer A, Meléndez M. Atrofia muscular espinal. Complicaciones y rehabilitación. Rehabilitación. 2001;35:307-11. https://doi.org/10.1016/S0048-7120(01)73196-9
Talbot K, Phil D, Davies KE, Phil D. Spinal muscular atrophy. Semin Neurol. 2001;21:189-97. https://doi.org/10.1055/s-2001-15264
Alatorre Jiménez M, Alejandro M, Ortiz G, Gabriel, Rodriguez D, Omayra N, et al. Atrofia muscular espinal: Estudio clínico y genético en México. Revista Médica de Costa Rica. 2017;74:623.
Farrar MA, Vucic S, Johnston HM, Du Sart D, Kiernan MC. Pathophysiological insights derived by natural history and motor function of spinal muscular atrophy. J Pediatr. 2013;162:155-9. https://doi.org/10.1016/j.jpeds.2012.05.067
Lin CW, Kalb SJ, Yeh WS. Delay in diagnosis of spinal muscular atrophy: A systematic literature review. Pediatr Neurol. 2015;53:293-300. https://doi.org/10.1016/j.pediatrneurol.2015.06.002
Pachajoa H, Ariza Y, Isaza C, Méndez F. Defectos congénitos mayores en un hospital de tercer nivel en Cali, Colombia 2004-2008. Rev Salud Pública. 2011;13:152-62.
Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377:1713-22. https://doi.org/10.1056/NEJMoa1706198
Bertini E, Dessaud E, Mercuri E, Muntoni F, Kirschner J, Reid C, et al. Safety and efficacy of olesoxime in patients with type 2 or non-ambulatory type 3 spinal muscular atrophy: A randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2017;16:513-522. https://doi.org/10.1016/S1474-4422(17)30085-6
Biogen. Biogen and Ionis Pharmaceuticals report nusinersen meets primary endpoint at interim analysis of phase 3 ENDEAR study in infantile-onset spinal muscular atrophy. Biogen Press Release August 1. 2016. Fecha de consulta: 22 de enero de 2021. Disponible en: https://investors.biogen.com/news-releases/news-release-details/biogen-and-ionispharmaceuticals-report-nusinersen-meets-primary18. Wu JW, Pepler L, Maturi B, Afonso ACF, Sarmiento J, Haldenby R. Systematic review of
motor function scales and patient reported outcomes in spinal muscular atrophy. Am J Phys Med Rehabil. 2021. https://doi.org/10.1097/PHM.0000000000001869
Ramsey D, Scoto M, Mayhew A, Main M, Mazzone ES, Montes J, et al. Revised Hammersmith Scale for spinal muscular atrophy: A SMA specific clinical outcome assessment tool. PLoS ONE. 2017;12:e0172346. https://doi.org/10.1371/journal.pone.0172346
O’Hagen JM, Glanzman AM, McDermott MP, Ryan PA, Flickinger J, Quigley J, et al. An expanded version of the Hammersmith Functional Motor Scale for SMA II and III patients. Neuromuscul Disord. 2007;17:693-7. https://doi.org/10.1016/j.nmd.2007.05.009
Main M, Kairon H, Mercuri E, Muntoni F. The Hammersmith functional motor scale for children with spinal muscular atrophy: A scale to test ability and monitor progress in children with limited ambulation. Eur J Paediatr Neurol. 2003;7:155-9.
Tizzano E. Atrofia muscular espinal infantil. Protoc Diagn Ter Pediatr. 2010;1:125-30.
Bertini E, Burghes A, Bushby K, Estournet-Mathiaud B, Finkel RS, Hughes RAC, et al. 134th ENMC international workshop: Outcome measures and treatment of spinal muscular atrophy 11-13 February 2005 Naarden, The Netherlands. Neuromuscul Disord. 2005;15:802-16. https://doi.org/10.1016/j.nmd.2005.07.005
Finkel RS, McDermott MP, Kaufmann P, Darras BT, Chung WK, Sproule DM, et al. Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology. 2014;83:810-7. https://doi.org/10.1212/WNL.000000000000074
Mercuri E, Lucibello S, Perulli M, Coratti G, De Sanctis R, Pera MC, et al. Longitudinal natural history of type I spinal muscular atrophy: A critical review. Orphanet J Rare Dis. 2020;15:84. https://doi.org/10.1186/s13023-020-01356-1
Zerres K, Rudnik-Schöneborn S, Forrest E, Lusakowska A, Borkowska J, Hausmanowa-Petrusewicz I. A collaborative study on the natural history of childhood and juvenile onset proximal spinal muscular atrophy (type II and III SMA): 569 patients. J Neurol Sci. 1997;146:67-72. https://doi.org/10.1016/s0022-510x(96)00284-5
Salort-Campana E, Quijano-Roy S. Clinical features of spinal muscular atrophy (SMA) type 3 (Kugelberg-Welander disease). Arch Pediatr. 2020;27:7S23-8. https://doi.org/10.1016/S0929-693X(20)30273-6
Gravel S, Zakharia F, Mccauley JL, Byrnes JK, Hedges DJ, Gignoux CR, et al. Reconstructing the population genetic history of the Caribbean. PLoS Genet. 2013;9:e1003925. https://doi.org/10.1371/journal.pgen.1003925
Kolb SJ, Coffey CS, Yankey JW, Krosschell K, Arnold WD, Rutkove SB, et al. Natural history of infantile-onset spinal muscular atrophy. Ann Neurol. 2017;82:883-91. https://doi.org/10.1002/ana.25101
Kaufmann P, McDermott MP, Darras BT, Finkel RS, Sproule DM, Kang PB, et al. Neurology. 2012;79:1889-97. https://doi.org/10.1212/WNL.0b013e318271f7e4
Mercuri E, Finkel R, Montes J, Mazzone ES, Sormani MP, Main M, et al. Patterns of disease progression in type 2 and 3 SMA: Implications for clinical trials. Neuromuscul Disord. 2016;26:126-31. https://doi.org/10.1016/j.nmd.2015.10.006
Wirth B, Karakaya M, Kye MJ, Mendoza-Ferreira N. Twenty-five years of spinal muscular atrophy research: From phenotype to genotype to therapy, and what comes next. Annu Rev Genomics Hum Genet. 2020;21:231-61. https://doi.org/10.1146/annurev-genom-102319-103602
Holanda Mendonça R, Matsui C, Polido GJ, Serafim Silva AM, Kulikowski L, Dias AT, et al. Intragenic variants in the SMN1 gene determine the clinical phenotype in 5q spinal muscular atrophy. Neurol Genet. 2020;6:e505. https://doi.org/10.1212/NXG.0000000000000505
Some similar items:
- Arletta Añez, Marco Fidel Suárez, Jorge Cuba, Factors that delay malaria diagnosis and treatment in the municipality of Riberalta in Bolivia , Biomedica: Vol. 32 (2012): Suplemento 1, Malaria
- Andrés F. Henao-Martínez, Guido R. González-Fontal, Steven Johnson, A case of community-acquired Acinetobacter junii-johnsonii cellulitis , Biomedica: Vol. 32 No. 2 (2012)
- Daniel Echeverri, Lorena Matta, Tuberculous pericarditis , Biomedica: Vol. 34 No. 4 (2014)
- Mónica Alejandra Bernal-Vargas, Jorge Alberto Cortés, Ricardo Sánchez, Cross-cultural adaptation of the community-acquired pneumonia score questionnaire in patients with mild-to-moderate pneumonia in Colombia , Biomedica: Vol. 37 No. 1 (2017)
- Germán Briceño, Jaime Céspedes, Martha Leal, Sarha Vargas, Prevalence of cardiovascular risk factors in schoolchildren from a rural and urban area in Colombia , Biomedica: Vol. 38 No. 4 (2018)
- Azucena Arévalo, William Alberto Otero, Alba Alicia Trespalacios, Helicobacter pylori: Multiple resistance in patients from Bogotá, Colombia , Biomedica: Vol. 39 No. Sp. 1 (2019): Suplemento 1, Microbiología médica, mayo

Article metrics | |
---|---|
Abstract views | |
Galley vies | |
PDF Views | |
HTML views | |
Other views |