Partial purification of peptides present in the Tityus macrochirus (Buthidae) scorpion venom and preliminary assessment of their cytotoxicity
Abstract
Introduction: Scorpion venom contains peptides with neurotoxic action primarily active on ion channels in the nervous system of insects and mammals. They are also characterized as cytolytic and anticancer, biological characteristics that have not yet been reported for the Tityus macrochirus venom.
Objective: To assess if the total T. macrochirus venom and the fraction of partially purified peptides decrease the viability of various tumor-derived cell lines.
Materials and methods: The scorpion venom was collected by electrical stimulation and, subsequently, subjected to chromatography, electrophoresis, and ultrafiltration with Amicon Ultra 0.5® membranes for the partial identification and purification of its peptides. The cytotoxic activity of the venom and the peptides fraction trials on tumor-derived cell lines were carried out by the MTT method.
Results: The T. macrochirus scorpion venom has peptides with molecular weights ranging between 3 and 10 kDa. They were partially purified using the ultrafiltration technique, and assessed by the RP-HPLC method. Cytotoxicity trials with the whole T. macrochirus venom showed a higher viability decrease on the PC3 cell line compared to the other cell lines assessed, while the partially purified peptides decreased the HeLa cell line viability.
Conclusion: Peptides in the T. macrochirus scorpion venom showed cytotoxic activity on some tumorderived cell lines. We observed some degree of selectivity against other cell lines assessed.
Downloads
References
Possani LD, Martin BM, Svendsen JB, Rode GS, Erickson BW. Scorpion toxins from Centruroides noxius and Tityus serrulatus primary structures and sequence comparison by metric analysis. Biochem J. 1985;229:739-50. http://dx.doi.org/10.1042/bj2290739
Escobar E, Velásquez L, Rivera C. Separación e identificación de algunas toxinas del veneno de Centruroides margaritatus (Gervais, 1841) (Scorpiones: Buthidae). Rev Perú Biol. 2003;10:217-20. http://dx.doi.org/10.15381/rpb.v10i2.2507
Barona J, Batista VF, Zamudio FZ, Gómez-Lagunas F, Wanke E, Otero R, et al. Proteomic analysis of the venom and characterization of toxins specific for Na+- and K+- channels from the Colombian scorpion Tityus pachyurus. Biochim Biophys Acta. 2006;1764:76-84. http://dx.doi.org/10.1016/j.bbapap.2005.08.010
Alves RS, Ximenes RM, Antonio RC, Nascimento NR, Martins RD, Rabello MM, et al. Isolation, homology modeling and renal effects of a C-type natriuretic peptide from the venom of the Brazilian yellow scorpion (Tityus serrulatus). Toxicon. 2013;74:19-26. http://dx.doi.org/10.1016/j.toxicon.2013.07.016
Ferreira LA, Alves EW, Henriques OB. Peptide T, a novel bradykinin potentiator isolated from Tityus serrulatus scorpion venom. Toxicon. 1993;31:941-7. http://dx.doi.org/10.1016/0041-0101(93)90253-F
Dai C, Ma Y, Zhao Z, Zhao R, Wang Q, Wu Y, et al. Mucroporin, the first cationic host defense peptide from the venom of Lychas mucronatus. Antimicrob Agents Chemother. 2008;52:3967-72. http://dx.doi.org/10.1128/AAC.00542-08
Guerrero-Vargas JA, Moura CB, Quintero-Herna V, Possani LD, Schwartz EF. Identification and phylogenetic analysis of Tityus pachyrus and Tityus obscurus novel putative Na+- channel scorpion toxins. PloS One. 2012;7 e30478. http://dx.doi.org/10.1371/journal.pone.0030478
Schwartz EF, Diego-García E, Rodríguez de la Vega RC, Possani LD. Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi (Arachnida: Scorpiones). BMC Genomics. 2007;8:119. http://dx.doi.org/10.1186/1471-2164-8-119
Chen T, Folan R, Kwok H, O’Kane EJ, Bjourson AJ, Shaw C. Isolation of scorpion (Androctonus amoreuxi) putative alpha neurotoxins and parallel cloning of their respective cDNAs from a single sample of venom. Regul Pept. 2003;115:115-21. http://dx.doi.org/10.1016/S0167-0115(03)00146-0
Chen T, Walker B, Zhou M, Shaw C. Molecular cloning of a novel putative potassium channel-blocking neurotoxin from the venom of the North African scorpion, Androctonus amoreuxi. Peptides. 2005;26:731-6. http://dx.doi.org/10.1016/j.peptides.2004.12.002
Jalali A, Bosmans F, Amininasab M, Clynen E, Cuypers E, Zaremirakabadi A, et al. OD1, the first toxin isolated from the venom of the scorpion Odontobuthus doriae active on voltage-gated Na+ channels. FEBS Letters. 2005;579:4181-6. http://dx.doi.org/10.1016/j.febslet.2005.06.052
Tytgat J, Chandy KG, García ML, Gutman GA, Martin-Eauclaire MF, van der Walt J, et al. A unified nomenclature for short-chain peptides isolated from scorpion venoms: Alpha-KTx molecular subfamilies. Trends Pharmacol Sci. 1999;20:444-7. http://dx.doi.org/10.1016/S0165-6147(99) 01398-X
Ortiz E, Gurrola GB, Schwartz EF, Possani LD. Scorpion venom components as potential candidates for drug development. Toxicon. 2015;93:125-35. http://dx.doi.org/10.1016/j.toxicon.2014.11.233
Zeng X, Corzo G, Hahin R. Scorpion venom peptideswithout disulfide bridges. IUBMB Life. 2005;57:13-21. http://dx.doi.org/10.1080/15216540500058899
Zeng XC, Li WX, Peng F, Zhu ZH. Cloning and characterization of a novel cDNA sequence encoding the precursor of a novel venom peptide (BmKbpp) related to a bradykininpotentiating peptide from Chinese scorpion Buthus martensii Karsch. IUBMB Life. 2000;49:207-10. http://dx.doi.org/10.1080/713803610
Almaaytah A, Albalas Q. Scorpion venom with no disulfide bridges: A review. Peptides. 2014;51:35-45. http://dx.doi.org/ 10.1016/j.peptides.2013.10.021
D’Suze G, Rosales A, Salazar V, Sevcik C. Apoptogenic peptides from Tityus discrepeans scorpion venom acting against the SKBR3 breast cancer cell line. Toxicon. 2010;56: 1497-505. http://dx.doi.org/10.1016/j.toxicon.2010.09.008
Guo X, Ma C, Du Q, Wei R, Wang L, Zhou M, et al. Two peptides, TsAP-1 and TsAP- 2, from the venom of the Brazilian yellow scorpion, Tityus serrulatus: Evaluation of their antimicrobial and anticancer activities. Biochimie. 2013;95:1784-94. http://dx.doi.org/10.1016/j.biochi.2013.06.003
Díaz A, Morier L, Rodríguez H, Caballero Y. Citotoxicidad del veneno del escorpión cubano Rhopalurus junceus y sus fracciones sobre líneas celulares tumorales humanas. LABIOFAM. 2010;1:12-8.
Rowe AH, Xiao Y, Scales J, Linse KD, Rowe MP, Cummins TR, et al. Isolation and characterization of CvIV4: A pain inducing α-scorpion toxin. PLoS One. 2011;6:e23520. http://dx.doi.org/10.1371/journal.pone.0023520
Das Gupta S, Debnath A, Saha A, Giri B, Tripathi G, Vedasiromoni J, et al. Indian black scorpion (Heterometrus bengalensis Koch) venom induced antiproliferative and apoptogenic activity against human leukemic cell lines U937 and K562. Leuk Res. 2007;31:817-25. http://dx.doi.org/10.1016/j.leukres.2006.06.004
Omran MA. In vitro anticancer effect of scorpion Leiurus quinquestriatus and Egyptian cobra venom on human breast and prostate cancer cell lines. J Med Sci. 2003;3:66-8. http://dx.doi.org/10.3923/jms.2003.66.86
Wang W, Ji Y. Scorpion venom induces glioma cell apoptosis in vitro and inhibits glioma tumor growth in vivo. J Neurooncol. 2005;73:1-7. http://dx.doi.org/10.1007/s11060-004-4205-6
Teruel R, García LF. Rare or poorly known scorpion from Colombia. I. Redescription of Tityus macrochirus Pocock, 1897. Euscorpius. 2008;63:1-11.
Oukkache N, Chgoury F, Lalaoui M, Cano A, Ghalim N. Comparison between two methods of scorpion venom milking in Morocco. J Venom Anim Toxins Incl Trop Dis. 2013;19:5. http://dx.doi.org/10.1186/1678-9199-19-5
Smith P, Krohn R, Hermanson G, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76-85. http://dx.doi.org/10.1016/0003-2697(85)90442-7
Fernández E, Galván A. Métodos para la cuantificación de proteínas. Fecha de consulta: 12 de diciembre de 2015. Disponible en: http://www.uco.es/dptos/bioquimicabiol-mol/pdfs/27%20M%C3%89TODOS%20PARA%20LA%20CUANTIFICACI%C3%93N%20DE%20PROTE%C3%8DNAS.pdf.
Schagger H, von Jagow G. Tricine-sodium dodecyl sulfatepolyacrylamide
gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987;166:368-79. http://dx.doi.org/10.1016/0003-2697(87)90587-2
Pimenta A, Martin-Eauclaired MF, Rochat H, Figueiredo S, Kalapothakis E, Afonso LC, et al. Purification, aminoacid sequence and partial characterization of two toxins with anti-insect activity from the venom of the South American scorpion Tityus bahiensis (Buthidae). Toxicon. 200;39:1009-19. http://dx.doi.org/10.1016/S0041-0101(00)00240-3
Zargan J, Umar S, Sajad M, Naime M, Ali S, Haider A. Scorpion venom (Odontobuthus doriae) induces apoptosis by depolarization of mitochondria and reduces S-phase population in human breast cancer cells (MCF-7). Toxicol In Vitro. 2011;25:1748-56. http://dx.doi.org/10.1016/j.tiv.2011.09.002
ATCC. The essentials of life science research. Globally Delivered. Fecha de consulta: 27 de abril 27 de 2016. Disponible en: https://www.atcc.org/~/media/PDFs/QC_Strains.ashx.
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55-63. http://dx.doi.org/10.1016/0022-1759(83)90303-4
Borgues A, De Sousa L, Espinoza J, Santos R-G, Kalapothakis E, Valadares D, et al. Characterization of Tityus scorpion venoms using synaptosome binding assays and reactivity towards Venezuelan and Brazilian antivenoms. Toxicon. 2008;51:66-79. http://dx.doi.org/10.1016/j.toxicon.2007.08.006
Schwartz EF, Capes EM, Diego-García E, Zamudio F, Fuentes O, Possani LD, et al. Characterization of hadrucalcin, a peptide from Hadrurus gertschi scorpion venom with pharmacological activity on ryanodine receptors. Br J Pharmacol. 2009;157:392-403. http://dx.doi.org/10.1111/j.1476-5381.2009.00147.x
De Roodt AR. Veneno de escorpiones (alacranes) y envenenamiento. Acta Bioquím Clín Latinoam. 2015;49:55-71.
Kawachi T, Miyashita M, Nakagawa Y, Miyagawa H. Isolation and characterization of anti-insect β-toxin from venom the scorpion Isometrus maculatus. Biosci Biotechnol. 2013;77:205-507. http://dx.doi.org/10.1271/bbb.120697
Jäger H, Dreker T, Buck A, Giehl K, Gress T, Grissmer S. Blokage of intermediate-conductance Ca2+ activated K+ channels inhibit human pancreatic cancer cell growth in vitro. Mol Pharmacol. 2004;65:630-8. http://dx.doi.org/10.1124/mol.65.3.630
Some similar items:
- Elpidia Poveda, Pilar Trujillo, Francisco Ruiz, Elizabeth Lopez, Glucose and insulin levels in Wistar rats submitted to high fat diet and treatment with mimetic leptin peptides , Biomedica: Vol. 28 No. 1 (2008)
- Oscar F. Herrán, María F. Ardila, Martha P. Rojas, Gustavo A. Hernández, Design of dietary questionnaires to study the relationships between diet and cancer prevalence in Colombia , Biomedica: Vol. 30 No. 1 (2010)
- Juan Carlos Herrera, Luis Fernando Isaza, José Luis Ramírez, Gonzalo Vásquez, Carlos Mario Muñetón, Detection of chromosome 17 aneuplody and TP53 gene deletion in a broad variety of solid tumors by dual-color fluorescence in situ hybridization (FISH) , Biomedica: Vol. 30 No. 3 (2010)
- Ricardo Cendales, Constanza Pardo, Claudia Uribe, Guillermo López, María Clara Yépez, Luis Eduardo Bravo, Data quality at population-based cancer registries in Colombia , Biomedica: Vol. 32 No. 4 (2012)
- Juan Vergara, Silvia Hurtado, Víctor H. Alvarez, Myriam Arévalo, Sócrates Herrera, Characterization of Plasmodium malariae transmission in four malaria endemic regions in Colombia , Biomedica: Vol. 21 No. 1 (2001)
- Jacqueline Barona, Rafael Otero, Vitelbina Programa de Ofidismo/Escorpionismo, Facu Núñez, Toxicological and immunological aspects of scorpion venom (Tytius pachyurus): neutralizing capacity of antivenoms produced in Latin America. , Biomedica: Vol. 24 No. 1 (2004)
- Paola Barroso, Hansen Murcia, Nohora Vega, Gerardo Pérez, Purification of IgY against Salvia bogotensis lectin. , Biomedica: Vol. 25 No. 4 (2005)
- Sonia Isabel Cuervo, Ricardo Sánchez, Julio César Gómez-Rincón, Cielo Almenares, Juan Pablo Osorio, María José Vargas, Behavior of carbapenemase-producing Klebsiella pneumoniae cases in cancer patients at a third level hospital in Bogotá, D.C. , Biomedica: Vol. 34 (2014): Abril, Suplemento 1, Resistencia bacteriana
- Esther de Vries, María Ximena Meneses, Marion Piñeros, Years of life lost as a measure of cancer burden in Colombia, 1997-2012 , Biomedica: Vol. 36 No. 4 (2016)
- Raúl Isaías-Tizapa, Erika Acosta, Arvey Tacuba-Saavedra, Miguel Mendoza-Catalán, Napoleón Navarro-Tito, Leptin induced Hic-5 expression and actin puncta formation by the FAK/Src-dependent pathway in MCF10A mammary epithelial cells. , Biomedica: Vol. 39 No. 3 (2019)

Article metrics | |
---|---|
Abstract views | |
Galley vies | |
PDF Views | |
HTML views | |
Other views |