Curvas del índice cintura-talla de adultos colombianos

María Victoria Benjumea, Cristian Santa , Alejandro Estrada , .

Palabras clave: relación cintura-estatura; antropometría; circunferencia de la cintura; gráfico; adulto; Colombia.

Resumen

Introducción. Colombia presenta un incremento progresivo del exceso de peso al igual que de la obesidad abdominal en los adultos, con mayor impacto en las mujeres.
Objetivo. Diseñar curvas percentilares del índice cintura-talla (ICT) de adultos colombianos por sexo y edad.
Materiales y métodos. Análisis secundario de datos de la Encuesta Nacional de la Situación Nutricional 2015, con medidas de cintura, peso y talla en adultos entre 20 y 60 años. Se utilizaron modelos generalizados aditivos de localización, escala y forma con transformación Box-Cox Power Exponential (BCPE) para construir las curvas; se hizo validación interna para garantizar que los modelos se ajustaran a los datos.
Resultados. Estudiados 23.759 adultos multiétnicos de Colombia con 49,8 % de mujeres. Las curvas del ICT de hombres se visualizaron con ligera curvatura, mientras que las de las mujeres aparecieron más planas. La mediana del IC/T incrementó de forma continua en ambos sexos: hasta 45 años en mujeres (0,45 a 0,49) y en hombres hasta 55 años (0,44 a 0,49). En los hombres, se mantuvo el valor de 0,50 después de 55 años, pero en las mujeres no, dado que permaneció en 0,50 hasta los 53 años y de ahí en adelante aumentó a 0,51.
Conclusión. Las curvas ajustadas con la distribución BCPE explicaron el comportamiento creciente del ICT por edad y sexo, y la capacidad predictiva del modelo. El incremento total de la mediana del ICT por edad y sexo fue similar e incremental (mujeres: 0,45 - 0,51; hombres: 0,44 - 0,50).

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

Benjumea MV, Bermúdez J. Capítulo 4: Situación Nutricional por Indicadores Antropométricos. En: Encuesta Nacional de la Situación Nutricional de Colombia –ENSIN 2015-. Bogotá: Instituto Colombiano de Bienestar Familiar/OPS/INS/UNAL. 2013-2018. Marzo de 2020. ISBN: 978-958-623-206.

Ministerio de Salud y Protección Social. Resolución 2465 de 2016. Fecha de consulta: 8 de marzo de 2024. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/resolucion-2465-2016.pdf

Bajpai A. Waist‑to‑Height Ratio—The New Body Mass Index? Editorial. Indian J of Pediatrics. 2022;89(9):849–50. DOI: 10.1007/s12098-022-04257-2

Pasdar Y, Moradi S, Moludi J, Saiedi S, Moradinazar M, Hamzeh B, et al. Waist-to-height ratio is a better discriminator of cardiovascular disease than other anthropometric indicators in Kurdish adults. Sci Rep. 2020;10(1):16228. doi: 10.1038/s41598-020-73224-8.

Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344:1343-50. doi: 10.1056/NEJM200105033441801.

Siren R, Eriksson JG, Vanhanen H. Waist circumference a good indicator of future risk for type 2 diabetes and cardiovascular disease. BMC Public Health. 2012;12(1):631. Doi:10.1186/1471-2458-12-631.

Ministerio de la Protección Social, PROFAMILIA, Instituto Nacional de Salud, Instituto Colombiano de Bienestar familiar. Encuesta Nacional de la Situación Nutricional en Colombia 2010. ENSIN 2010. Bogotá: Da Vinci editores & CÏA. SNC. Agosto de 2011.

Wang Y, Beydoun MA, Min J, Xue H, Kaminsky LA, Cheskin LJ, et al. Has the prevalence of overweight, obesity and central obesity levelled off in the United States? Trends, patterns, disparities, and future projections for the obesity epidemic. Int J Epidemiol. 2020;49(3):810–23. DOI: 10.1093/ije/dyz273

Ramírez-López LX, Aguilera AM, Rubio CM, Aguilar-Mateus AM. Síndrome metabólico: una revisión de criterios internacionales. Rev Colomb Cardiol. 2021;28(1):60-6. DOI: 10.24875/RCCAR.M21000010

Lear SA, James PT, Ko GT, Kumanyika S. Appropriateness of waist circumference and waist-to-hip ratio cutoffs for different ethnic groups. Eur J of Cli Nutr. 2010;64:42–61. DOI: 10.1038/ejcn.2009.70

Tang HK, Nguyen CTC, Vo NHT. Anthropometric indicators to estimate percentage of body fat: a comparison using cross-sectional data of children and adolescents in Ho Chi Minh City, Vietnam. Indian J Pediatr. 2022;89(9):857-64. doi: 10.1007/s12098-021-03882-7.

Zhang S, Fu X, Zhi Du, Guo X, Li Z, Sun G, et al. Is waist‑to‑height ratio the best predictive indicator of cardiovascular disease incidence in hypertensive adults? A cohort study. BMC Cardiovascular Disorders. 2022;22:214. DOI: 10.1186/s12872-022-02646-1

Hernández-Rodríguez J, Duchi-Jimbo PN, Domínguez-Alonso E, Díaz-Díaz O, Martínez-Montenegro I, Bosch-Pérez Y, et al. Valor de corte del índice cintura/talla como predictor independiente de disglucemias. Rev Cub de End. 2017;28(2). Fecha de consulta: 8 de marzo de 2024. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1561-29532017000200002&lng=es.

Meseri R, Ucku R, Unal B. Waist:height ratio: a superior index in estimating cardiovascular risks in Turkish adults. Public Health Nutr. 2014;17(10):2246-52. DOI: 10.1017/S136898001300267X

Peng Y, Li W, Wang Y, Bo J, Chen H. The Cut-Off Point and Boundary Values of Waist-to- Height Ratio as an Indicator for Cardiovascular Risk Factors in Chinese Adults from the PURE Study. PLoS ONE. 2015;10(12):e0144539. doi: 10.1371/journal.pone.0144539.

Gonçalves M, Fonseca-Passos MC, Daleprane J, Correa-Koury J. Is it possible to identify underlying cardiovascular risk in young trained military? J Sports Med Phys Fitness. 2016;56(1-2):125-32. Disponible en: https://pubmed.ncbi.nlm.nih.gov/25369279/

Kahn HS, Bullard K. Beyond Body Mass Index: Advantages of Abdominal Measurements for Recognizing Cardiometabolic Disorders. Am J Med. 2016;129(1):74-81.e2. DOI: 10.1016/j.amjmed.2015.08.010

Staynor JMD, Smith MK, Donnelly CJ, Sallam AE, Ackland TR. DXA reference values and anthropometric screening for visceral obesity in Western Australian adults. Sci Rep. 2020;10(1):18731. DOI: 10.1038/s41598-020-73631-x

Forero AY, Forero LC. Comparación entre mediciones e índices antropométricos para evaluar la obesidad general y la abdominal, Colombia ENSIN 2015. Biomédica. 2023;43(Supl.3):88-98. DOI: https://doi.org/10.7705/biomedica.7011

Vargas-Moranth R, Alcocer-Olaciregui A, Bilbao-Ramírez J, Lío-Carrillo JF, Fontalvo-De Alba G, Cerro-Martínez C, et al. Prevalencia de obesidad según relación cintura/talla en cuatro municipios del caribe colombiano. Arch de Medicina (Col). 2018;18(1):60-8. DOI: https://doi.org/10.30554/archmed.18.1.2356.2018

Instituto Colombiano de Bienestar Familiar, Ministerio de Salud y Protección Social, Instituto Nacional de Salud. Encuesta Nacional de la Situación Nutricional -ENSIN 2015. 2021.

Lohman TG, Roche AF, Martorell R. Anthropometric standardization reference manual, Illinois: Human Kinetic Boocks, Champaing. 1988.

The International Society for the Advancement of Kinanthropometry -ISAK-. Protocolo internacional para la valoración antropométrica. 2019. Fecha de consulta: 8 de marzo de 2024. Disponible en: https://www.youtube.com/watch?v=Ff2WDc7LhXU.

Cleveland WS, Grosse E, Shyu WM. Local regression models. Chapter 8. In: Statistical Models in S. Chambers JM, Hastie TJ. Ed. Wadsworth & Brooks/Cole. 1992.

Koenker RP, Pin Ng, Portnoy S. Quantile Smoothing Splines. Biometrika. 1994;81: 673–80. Doi: https://doi.org/10.2307/2337070

Stasinopoulos DM, Rigby RA. Generalized additive models for location scale and shape (GAMLSS) in R. J of Statistical Software. 2007;23(7):1-46. Doi: https://doi.org/10.18637/jss.v023.i07

Rigby RA, Stasinopoulos DM, Voudouris V. Discussion: A comparison of GAMLSS with quantile regression. Statistical Modelling. 2013;13(4):335-48. Doi: https://doi.org/10.1177/1471082X13494316

Royston P, Altman DG. Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling (with discussion). Appl. Statist. 1994;43:429-67.

Durrleman S, Simon R. Flexible regression models with cubic splines. Statistics in medicine. 1989;8(5):551-61.

Rigby RA, Stasinopoulos DM, Heller GZ, De Bastiani F. Chapter 10: Maximum likelihood estimation. In: Distributions for modeling location, scale, and shape: Using GAMLSS in R. 1st Edition. Chapman and Hall/CRC, 2019. P.143-73.

WHO Multicentre Growth Reference Study Group. Assessment of differences in linear growth among populations in the WHO Multicentre Growth Reference Study. Acta Paediatrica. 2006;95(S450):56-65.

Cohen J. Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Lawrence Erlbaum Associates. 1988. Fecha de consulta: 8 de marzo de 2024. Disponible en: http://www.utstat.toronto.edu/~brunner/oldclass/378f16/readings/CohenPower.pdf.

Bozdogan H. Akaike’s Information Criterion and Recent Developments in Information Complexity. J of Mathematical Psychology. 2000;44(1):62–91. Doi: https://doi.org/10.1006/JMPS.1999.1277.

Mardia KV. Applications of Some Measures of Multivariate Skewness and Kurtosis in Testing Normality and Robustness Studies. The Indian J of Statistics, Series B. 1974;36(2):115–28. Fecha de consulta: 8 de marzo de 2024. Disponible en: https://www.jstor.org/stable/25051892.

Royston P, Wright EM. Goodness of fit statistics for the age-specific reference intervals. Stat Med. 2000;19(21):2943-62.

van Buuren S, Fredriks M. Worm plot: simple diagnostic device for modelling growth reference curves. Stat Med. 2001;20(8):1259-77. doi: 10.1002/sim.746.

Rigby RA, Stasinopoulos DM. Smooth centile curves for skew and kurtotic data modelled using the Box‐Cox Power Exponential distribution. Statist. Med. 2004b;23:3053–76.

Byrd RH, Lu P, Nocedal J, Zhu C. A limited memory algorithm for bound constrained optimization. SIAM J on Scientific Computing. 1995;16:1190–1208.

Rigby RA, Stasinopoulos DM. Automatic smoothing parameter selection in GAMLSS with an application to centile estimation. Statistical methods in medical research. 2014;23(4):318-32.

Millar SR, Perry IJ, Phillips CM. Assessing cardiometabolic risk in middle‑aged adults using body mass index and waist–height ratio: are two indices better than one? A cross‑sectional study. Diabetol Metab Syndr. 2015;7:73. doi: 10.1186/s13098-015-0069-5

Fu-Liang Zhang, Jia-Xin Ren, Peng Zhang, Hang Jin, Yang Qu, Yao Yu, et al. Strong Association of Waist Circumference (WC), Body Mass Index (BMI), Waist-to-Height Ratio (WHtR), and Waist-to-Hip Ratio (WHR) with Diabetes: A Population-Based Cross-Sectional Study in Jilin Province, China. J Diabetes Res. 2021:8812431. doi: 10.1155/2021/8812431.

Peng Lu, Zhu L, Hu L, Bao H, Huang X, Zhou W, et al. Association of waist-to-height ratio with hypertension and its subtypes in southern China. J of Human Hypertension. 2022;36:775–80. DOI: 10.1038/s41371-021-00566-9

Montenegro-Mendoza R, Moreno-Velásquez I, Fontes F, Quintana H. Prevalence of central obesity according to different definitions in normal weight adults of two crosssectional studies in Panama. The Lancet Regional Health – Americas. 2022;10:100215. Doi: https://doi.org/10.1016/j.lana.2022.100215.

Kang SH, Cho KH, Park JW, Do JY. Comparison of waist to height ratio and body indices for prediction of metabolic disturbances in the Korean population: the Korean National Health and Nutrition Examination Survey 2008–2011. BMC Endocrine Disorders. 2015;15:79. DOI: 10.1186/s12902-015-0075-5

Ramírez-Vélez R, Correa-Bautista JE, Martínez-Torres J, Méneses-Echavez JF, González-Ruiz K, González-Jiménez E, et al. LMS tables for waist circumference and waist-height ratio in Colombian adults: analysis of nationwide data 2010. Eur J Clin Nutr. 2016;70(10):1189-96. DOI: 10.1038/ejcn.2016.46

World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO consultation on obesity, 3–5 June 1997, WHO/ NUT/NCD/98.1 1997. WHO: Geneva, 1997. Fecha de consulta: 8 de marzo de 2024. Disponible en: https://iris.who.int/handle/10665/63854

Ashwell M, Hsieh SD. Six reasons why the waist-to-height ratio is a rapid and effective global indicator for health risks of obesity and how its use could simplify the international public health message on obesity. Int J Food Sci Nutr. 2005;56(5):303–7. DOI: 10.1080/09637480500195066

Lopez-Legarrea P, Garcia-Rubio J, Oviedo-Silva F, Collado-Mateo D, Merellano-Navarro E, Olivares PR. Waist circumference and waist:height ratio percentiles using LMS method in Chilean population. Nutr Metab Cardiovasc Dis. 2017;27(2):183-9. DOI: 10.1016/j.numecd.2016.09.010

Ding J, Chen X, Bao K, Yang J, Liu N, Huang W, et al. Assessing different anthropometric indices and their optimal cutoffs for prediction of type 2 diabetes and impaired fasting glucose in Asians: The Jinchang Cohort Study. J Diabetes. 2020;12(5):372-84. doi: 10.1111/1753-0407.13000.

Nasreddine L, Bachir N, Kharroubi S, Chamieh MC, Mehio Sibai A, Hwalla N, Naja F. Anthropometric Cutoffs for Increased Cardiometabolic Risk Among Lebanese Adults: A Cross-Sectional Study. Metab Syndr Relat Disord. 2019;17(10):486-93. doi: 10.1089/met.2019.0033.

Lopez-Legarrea P, Garcia-Rubio J, Oviedo-Silva F, Collado-Mateo D, Merellano-Navarro E, Olivares PR. Waist circumference and waist:height ratio percentiles using LMS method in Chilean population. Nutr Metab Cardiovasc Dis. 2017;27(2):183-189. doi: 10.1016/j.numecd.2016.09.010.

Campuzano-Rincón JC, Martínez-Núñez L, Martín-Rodríguez J, Ortiz-Gómez Y. Índices antropométricos como indicadores de riesgo cardiometabólico en adultos mexicanos, ENSANUT MC 2016. Rev. Salud Pública. 2022;24(5): 1-8. Doi: https://doi.org/10.15446/rsap.v24n5.98355.

Corrêa MM, Facchini LA, Thumé E, Oliveira ERA, Tomasi E. The ability of waist-to-height ratio to identify health risk. Rev Saude Publica. 2019;53:66. DOI: 10.11606/s1518-8787.2019053000895

Misra A. Revisions of cutoffs of body mass index to define overweight and obesity are needed for the Asian-ethnic groups. Int J Obes Relat Metab Disord. 2003;27(11):1294-6. DOI: 10.1038/sj.ijo.0802412

Stevens J. Ethnic-specific revisions of body mass index cutoffs to define overweight and obesity in Asians are not warranted. Int J Obes Relat Metab Disord. 2003;27(11):1297-9. DOI: 10.1038/sj.ijo.0802417

Qian X, Su C, Zhang B, Qin G, Wang H, Wu Z. Changes in distributions of waist circumference, waist-to-hip ratio and waist- to-height ratio over an 18-year period among Chinese adults: a longitudinal study using quantile regression. BMC Public Health. 2019;19:700. DOI: 10.1186/s12889-019-6927-6

Cómo citar
1.
Benjumea MV, Santa C, Estrada A. Curvas del índice cintura-talla de adultos colombianos. Biomed. [Internet]. 18 de diciembre de 2024 [citado 4 de abril de 2025];45(2). Disponible en: https://revistabiomedicaorg.biteca.online/index.php/biomedica/article/view/7647

Algunos artículos similares:

Publicado
2024-12-18
Sección
Artículos originales

Métricas

Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas
Crossref Cited-by logo
QR Code