Interacción tripanosoma-vector-vertebrado y su relación con la sistemática y la epidemiología de la tripanosomiasis americana
Palabras clave:
Trypanosoma, Rhodnius, tripanosomiasis/epidemiología, técnica del ADN polimorfo amplificado aleatorio (RAPD), enfermedad de Chagas
Resumen
Introducción. Trypanosoma rangeli es la segunda especie de tripanosoma que infecta al hombre en América Latina. Se ha observado variabilidad en las características biológicas, bioquímicas y moleculares en diferentes aislamientos de este parásito.Objetivo. Estudiar las características morfológicas y moleculares de cepas de T. rangeli aisladas de diferentes especies de Rhodnius e inoculadas en diferentes especies de vertebrados.
Materiales y métodos. Se utilizaron 19 cepas de T. rangeli aisladas de R. prolixus, R. pallescens y R. colombiensis en Colombia, R. ecuadoriensis en Perú y R. pallescens en Panamá. Se evaluó el polimorfismo de los tripomastigotes sanguíneos en ratones ICR y se estudió el pleomorfismo de la cepa P53 de T. rangeli KP1(-) inoculada en ratón, marsupial y canino. Se efectuó análisis de ADN polimorfo amplificado aleatorio en 12 cepas aisladas de cuatro especies de Rhodnius.
Resultados. Se observaron tres grupos discretos en la longitud total de los tripomastigotes sanguíneos y la cepa P53 presentó diferencias significativas en el tamaño de los tripomastigotes sanguíneos en ratón, marsupial y canino. El análisis de ADN polimorfo amplificado aleatorio mostró segregación de las cepas en dos ramas correspondientes a las cepas de T. rangeli KP1(+) y T. rangeli KP1(-). De otra parte todos las cepas de T. rangeli KP1(-) se agruparon de acuerdo con las especies de Rhodnius de las cuales fueron aisladas.
Conclusión. Este es el primer estudio que revela una estrecha asociación entre cepas de T. rangeli y las especies de Rhodnius, confirmando que cada especie de Rhodnius transmite al hospedero vertebrado poblaciones del parásito con claras diferencias fenotípicas y genotípicas, lo cual soporta la evolución clonal de estas poblaciones.
Descargas
Los datos de descargas todavía no están disponibles.
Referencias bibliográficas
1. Marinkelle CJ. Pathogenicity of Trypanosoma rangeli for Rhodnius prolixus Stal in nature. J Med Entomol 1968;5:497-9.
2. Watkins R. Trypanosoma rangeli: effect on excretion in Rhodnius prolixus. J Invertebr Pathol 1971;17:67-71.
3. Watkins R. Histology of Rhodnius prolixus infected with Trypanosoma rangeli. J Invertebr Pathol 1971;17:59-66.
4. D'Alessandro-Bacigalupo A, Gore-Saravia N. Trypanosoma rangeli. En: Kreier JP, editor. Parasitic protozoa. London: Academic Press; 1992.p.1-54.
5. D'Alessandro-Bacigalupo A, Gore-Saravia N. Trypanosoma rangeli. En: Gilles HM, editor. Protozoal diseases. Oxford: Oxford University Press; 1999.p.398-412.
6. GuhI F, Hudson L, Marinkelle CJ, Morgan S, Jaramillo C. Antibody response to experimental Trypanosoma rangeli infection and its implications for immunodiagnosis of South American trypanosomiasis.
Acta Trop 1985;42:311-8.
7. Guhl F, Hudson L, Marinkelle CJ, Jaramillo CA, Bridge D. Clinical Trypanosoma rangeli infection as a complication of Chagas' disease. Parasitology 1987;94:475-84.
8. Guhl F, Vallejo GA. Trypanosoma (Herpetosoma) rangeli Tejera, 1920: an updated review. Mem Inst Oswaldo Cruz 2003;98:435-42.
9. Urrea DA, Carranza JC, Cuba CA, Gurgel- Gonçalves R, Guhl F, Schofield CJ, et al. Molecular characterisation of Trypanosoma rangeli strains isolated from Rhodnius ecuadoriensis in Peru, R.
colombiensis in Colombia and R. pallescens in Panama, supports a co-evolutionary association between parasites and vectors. Infect Genet Evol 2005;5:123-9.
10. Vallejo GA, Marinkelle CJ, Guhl F, De Sánchez N. Comportamiento de la infección y diferenciación morfológica entre Trypanosoma cruzi y T. rangeli en el intestino del vector Rhodnius prolixus. Rev Bras Biol 1988;48:577-87.
11. Guhl F, Jaramillo C, Carranza JC, Vallejo GA. Molecular characterization and diagnosis of Trypanosoma cruzi and T. rangeli. Arch Med Res 2002;33:362-70.
12. Macedo AM, Vallejo GA, Chiari E, Pena SD. DNA fingerprinting reveals relationships between strains of Trypanosoma rangeli and Trypanosoma cruzi. En: Pena SD, Chakraborty R, Epplen JT, Jeffreys AJ, editors. DNA fingerprinting: state of the Science. Basel, Switzerland: Birkhauser Verlag: 1993. p.321-9.
13. Vallejo GA, Macedo AM, Chiari E, Pena SD. Kinetoplast DNA from Trypanosoma rangeli contains two distinct classes of minicircle with different size and molecular organization. Mol Biochem Parasitol 1994;67:245-53.
14. Steindel M, Dias-Neto E, Pinto CJ, Grisard E, Menezes C, Murta SM, et al. Randomly amplified polymorphic DNA (RAPD) and isoenzyme analysis of Trypanosoma rangeli strains. J Eukaryot Microbiol
1994;41:261-7.
15. Toaldo CB, Steindel M, Sousa MA, Tavares CC. Molecular karyotype and chromosomal localization of genes encoding 0-tubulina, cisteina proteinase, HSP 70 and actin in Trypanosoma rangeli. Mem Inst Oswaldo Cruz 2001;96:113-21.
16. Vallejo GA, Guhl F, Chiari E, Macedo AM. Specie specific detection of Trypanosoma cruzi and Trypansoma rangeli in vector and mammalian hosts by polymerase chain reaction amplification of kinetoplast minicircle DNA. Acta Trop 1999;72:203-12.
17. Vallejo GA, Guhl F, Carranza JC, Lozano LE, Sánchez JL, Jaramillo JC, et al. kDNA markers define two major Trypanosoma rangeli lineages in Latin America. Acta Trop 2002;81:77-82.
18. Vallejo GA, Guhl F, Carranza JC, Moreno J, Triana O, Grisard EC. Parity between kinetoplast DNA and miniexon gene sequences supports either clonal evolution or speciation in Trypanosoma rangeli strains isolated from Rhodnius colombiensis, R. pallescens and R. prolixus in Colombia. Infect Genet Evol 2003;3:39-45.
19. Grisard EC, Campbell DA, Romanha AJ. Mini-exon gene sequence polymorphism among Trypanosoma rangeli strains isolated from distinct geographical regions. Parasitology 1999;118:375-82.
20. Hoare CA. Herpetosoma from man and other mammals. En: The trypanosomes of mammals: a zoological monograph. Oxford: Blackwell Scientific Publications; 1972.p.288-314
21. Ziccardi M, Lourenco-de-Oliveira R. Polymorphism in trypomastigotes of Trypanosoma (Megatrypanum) minasense in the blood of experimentally infected squirrel monkey and marmosets. Mem Inst Oswaldo
Cruz 1999;94:649-53.
22. Sanguinetti CJ, Dias-Neto E, Simpson AJ. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 1994;17:914-21.
23. Black WC. Statistical analysis of arbitrarily primed PCR patterns in molecular taxonomic studies. En: Clap CL, editor. Methods in molecular biology. Species diagnostics protocols: PCR and other nucleic acid methods. Vol. 50. Totowa, NJ: Humana Press; 1995. p.39-55.
24. Nei M. Estimation of average heterozygocity and genetic distance from a small number of individuals. Genetics 1978;89:583-90.
25. Sánchez IP, Pulido XC, Carranza JC, Triana O, Vallejo GA. Inmunidad natural de Rhodnius prolixus (Hemiptera: Reduviidae: Triatominae) frente a la infección con Trypanosoma (Herpetosoma) rangeli
KP1(-) aislados de Rhodnius pallescens, R. colombiensis y R. ecuadoriensis. Revista de la Asociación Colombiana de Ciencias Biológicas 2005;17:108-18.
26. Maia da Silva F, Rodrigues AC, Campaner M, Takata CS, Brigido MC, Junqueira AC, et al. Randomly amplified polymorphic DNA analysis of Trypanosoma rangeli and allied species from human, monkeys and other sylvatic mammals of the Brazilian Amazon disclosed a new group and a species-specific marker. Parasitology 2004;128:283-94.
27. Thorpe JP, Solé-Cava AM. The use of allozyme electrophoresis in invertebrate systematics. Zool Scr 1994;23:3-18
28. Brisse S, Barnabé C, Tibayrenc M. Identification of six Trypanosoma cruzi phylogenetic lineages by random amplified polymorphic DNA and multilocus enzyme electrophoresis. Int J Parasitol 2000;30:35-44.
29. Brisse S, Verhoef J, Tibayrenc M. Characterization of large and small subunit rRNA and mini-exon genes further supports the distinction of six Trypanosoma cruzi lineages. Int J Parasitol 2001;31:1218-26.
2. Watkins R. Trypanosoma rangeli: effect on excretion in Rhodnius prolixus. J Invertebr Pathol 1971;17:67-71.
3. Watkins R. Histology of Rhodnius prolixus infected with Trypanosoma rangeli. J Invertebr Pathol 1971;17:59-66.
4. D'Alessandro-Bacigalupo A, Gore-Saravia N. Trypanosoma rangeli. En: Kreier JP, editor. Parasitic protozoa. London: Academic Press; 1992.p.1-54.
5. D'Alessandro-Bacigalupo A, Gore-Saravia N. Trypanosoma rangeli. En: Gilles HM, editor. Protozoal diseases. Oxford: Oxford University Press; 1999.p.398-412.
6. GuhI F, Hudson L, Marinkelle CJ, Morgan S, Jaramillo C. Antibody response to experimental Trypanosoma rangeli infection and its implications for immunodiagnosis of South American trypanosomiasis.
Acta Trop 1985;42:311-8.
7. Guhl F, Hudson L, Marinkelle CJ, Jaramillo CA, Bridge D. Clinical Trypanosoma rangeli infection as a complication of Chagas' disease. Parasitology 1987;94:475-84.
8. Guhl F, Vallejo GA. Trypanosoma (Herpetosoma) rangeli Tejera, 1920: an updated review. Mem Inst Oswaldo Cruz 2003;98:435-42.
9. Urrea DA, Carranza JC, Cuba CA, Gurgel- Gonçalves R, Guhl F, Schofield CJ, et al. Molecular characterisation of Trypanosoma rangeli strains isolated from Rhodnius ecuadoriensis in Peru, R.
colombiensis in Colombia and R. pallescens in Panama, supports a co-evolutionary association between parasites and vectors. Infect Genet Evol 2005;5:123-9.
10. Vallejo GA, Marinkelle CJ, Guhl F, De Sánchez N. Comportamiento de la infección y diferenciación morfológica entre Trypanosoma cruzi y T. rangeli en el intestino del vector Rhodnius prolixus. Rev Bras Biol 1988;48:577-87.
11. Guhl F, Jaramillo C, Carranza JC, Vallejo GA. Molecular characterization and diagnosis of Trypanosoma cruzi and T. rangeli. Arch Med Res 2002;33:362-70.
12. Macedo AM, Vallejo GA, Chiari E, Pena SD. DNA fingerprinting reveals relationships between strains of Trypanosoma rangeli and Trypanosoma cruzi. En: Pena SD, Chakraborty R, Epplen JT, Jeffreys AJ, editors. DNA fingerprinting: state of the Science. Basel, Switzerland: Birkhauser Verlag: 1993. p.321-9.
13. Vallejo GA, Macedo AM, Chiari E, Pena SD. Kinetoplast DNA from Trypanosoma rangeli contains two distinct classes of minicircle with different size and molecular organization. Mol Biochem Parasitol 1994;67:245-53.
14. Steindel M, Dias-Neto E, Pinto CJ, Grisard E, Menezes C, Murta SM, et al. Randomly amplified polymorphic DNA (RAPD) and isoenzyme analysis of Trypanosoma rangeli strains. J Eukaryot Microbiol
1994;41:261-7.
15. Toaldo CB, Steindel M, Sousa MA, Tavares CC. Molecular karyotype and chromosomal localization of genes encoding 0-tubulina, cisteina proteinase, HSP 70 and actin in Trypanosoma rangeli. Mem Inst Oswaldo Cruz 2001;96:113-21.
16. Vallejo GA, Guhl F, Chiari E, Macedo AM. Specie specific detection of Trypanosoma cruzi and Trypansoma rangeli in vector and mammalian hosts by polymerase chain reaction amplification of kinetoplast minicircle DNA. Acta Trop 1999;72:203-12.
17. Vallejo GA, Guhl F, Carranza JC, Lozano LE, Sánchez JL, Jaramillo JC, et al. kDNA markers define two major Trypanosoma rangeli lineages in Latin America. Acta Trop 2002;81:77-82.
18. Vallejo GA, Guhl F, Carranza JC, Moreno J, Triana O, Grisard EC. Parity between kinetoplast DNA and miniexon gene sequences supports either clonal evolution or speciation in Trypanosoma rangeli strains isolated from Rhodnius colombiensis, R. pallescens and R. prolixus in Colombia. Infect Genet Evol 2003;3:39-45.
19. Grisard EC, Campbell DA, Romanha AJ. Mini-exon gene sequence polymorphism among Trypanosoma rangeli strains isolated from distinct geographical regions. Parasitology 1999;118:375-82.
20. Hoare CA. Herpetosoma from man and other mammals. En: The trypanosomes of mammals: a zoological monograph. Oxford: Blackwell Scientific Publications; 1972.p.288-314
21. Ziccardi M, Lourenco-de-Oliveira R. Polymorphism in trypomastigotes of Trypanosoma (Megatrypanum) minasense in the blood of experimentally infected squirrel monkey and marmosets. Mem Inst Oswaldo
Cruz 1999;94:649-53.
22. Sanguinetti CJ, Dias-Neto E, Simpson AJ. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 1994;17:914-21.
23. Black WC. Statistical analysis of arbitrarily primed PCR patterns in molecular taxonomic studies. En: Clap CL, editor. Methods in molecular biology. Species diagnostics protocols: PCR and other nucleic acid methods. Vol. 50. Totowa, NJ: Humana Press; 1995. p.39-55.
24. Nei M. Estimation of average heterozygocity and genetic distance from a small number of individuals. Genetics 1978;89:583-90.
25. Sánchez IP, Pulido XC, Carranza JC, Triana O, Vallejo GA. Inmunidad natural de Rhodnius prolixus (Hemiptera: Reduviidae: Triatominae) frente a la infección con Trypanosoma (Herpetosoma) rangeli
KP1(-) aislados de Rhodnius pallescens, R. colombiensis y R. ecuadoriensis. Revista de la Asociación Colombiana de Ciencias Biológicas 2005;17:108-18.
26. Maia da Silva F, Rodrigues AC, Campaner M, Takata CS, Brigido MC, Junqueira AC, et al. Randomly amplified polymorphic DNA analysis of Trypanosoma rangeli and allied species from human, monkeys and other sylvatic mammals of the Brazilian Amazon disclosed a new group and a species-specific marker. Parasitology 2004;128:283-94.
27. Thorpe JP, Solé-Cava AM. The use of allozyme electrophoresis in invertebrate systematics. Zool Scr 1994;23:3-18
28. Brisse S, Barnabé C, Tibayrenc M. Identification of six Trypanosoma cruzi phylogenetic lineages by random amplified polymorphic DNA and multilocus enzyme electrophoresis. Int J Parasitol 2000;30:35-44.
29. Brisse S, Verhoef J, Tibayrenc M. Characterization of large and small subunit rRNA and mini-exon genes further supports the distinction of six Trypanosoma cruzi lineages. Int J Parasitol 2001;31:1218-26.
Cómo citar
1.
Vallejo GA, Guhl F, Carranza JC, Triana O, Pérez G, Ortiz PA, et al. Interacción tripanosoma-vector-vertebrado y su relación con la sistemática y la epidemiología de la tripanosomiasis americana. Biomed. [Internet]. 1 de enero de 2007 [citado 4 de abril de 2025];27(1esp):110-8. Disponible en: https://revistabiomedicaorg.biteca.online/index.php/biomedica/article/view/254
Algunos artículos similares:
- Iveth J. González, Las metacaspasas y su rol en la vida y muerte de los parásitos protozoarios humanos , Biomédica: Vol. 29 Núm. 3 (2009)
- Diana Carolina López, Carlos Jaramillo, Felipe Guhl, Estructura poblacional y variabilidad genética de Rhodnius prolixus (Hemiptera: Reduviidae) procedente de diferentes áreas geográficas de Colombia , Biomédica: Vol. 27 Núm. 1esp (2007): Enfermedad de Chagas
- Andrea Arévalo, Julio César Carranza, Felipe Guhl, Jairo A. Clavijo, Gustavo Adolfo Vallejo, Comparación de los patrones de alimentación y defecación de Rhodnius colombiensis y Rhodnius prolixus (Hemiptera, Reduviidae, Triatominae) en condiciones de laboratorio , Biomédica: Vol. 27 Núm. 1esp (2007): Enfermedad de Chagas
- Andrea Arévalo, Julio César Carranza, Felipe Guhl, Jairo Alfonso Clavijo, Gustavo Adolfo Vallejo, Comparación del ciclo de vida de Rhodnius colombiensis Moreno, Jurberg & Galvão, 1999 y Rhodnius prolixus Stal, 1872(Hemiptera, Reduviidae, Triatominae) en condiciones de laboratorio , Biomédica: Vol. 27 Núm. 1esp (2007): Enfermedad de Chagas
- Andrea Arévalo, Julio César Carranza, Felipe Guhl, Gustavo Adolfo Vallejo, Patrones electroforéticos de hemoproteínas salivares (nitroforinas) de Rhodnius colombiensis y Rhodnius prolixus (Hemiptera, Reduviidae, Triatominae) , Biomédica: Vol. 27 Núm. 1esp (2007): Enfermedad de Chagas
- Lorenzo Cáceres, José R. Rovira, José Calzada, Azael Saldaña, Evaluación de la actividad tóxica de los insecticidas piretroides deltametrina y lambdacihalotrina en dos poblaciones de campo de Rhodnius pallescens (Hemíptera: Reduviidae) de Panamá , Biomédica: Vol. 31 Núm. 1 (2011)
- Víctor Manuel Angulo, Lyda Esteban, Katherine Paola Luna, Attalea butyracea próximas a las viviendas como posible fuente de infestación domiciliaria por Rhodnius prolixus (Hemiptera: Reduviidae) en los Llanos Orientales de Colombia , Biomédica: Vol. 32 Núm. 2 (2012)
- Camilo Rubio, Ligia Inés Moncada, Marco Andrés Rojas, Alexander García, Comportamiento de Rhodnius robustus Larousse, 1927 (Hemiptera, Reduviidae) durante su alimentación en condiciones de laboratorio , Biomédica: Vol. 33 Núm. 2 (2013)
- Víctor Manuel Angulo, Lyda Esteban, Plutarco Urbano, Eduwin Hincapié, Luis Alberto Núñez, Comparación de métodos para la captura de triatominos (Hemiptera: Reduviidae) en palmas Attalea butyracea en los Llanos Orientales de Colombia , Biomédica: Vol. 33 Núm. 4 (2013)
- Carmen Vásquez, Sara Robledo, Jaime Calle, Omar Triana, Identificación de nuevos escenarios epidemiológicos para la enfermedad de Chagas en la región momposina, norte de Colombia , Biomédica: Vol. 33 Núm. 4 (2013)
Sección
Artículos originales
Estadísticas de artículo | |
---|---|
Vistas de resúmenes | |
Vistas de PDF | |
Descargas de PDF | |
Vistas de HTML | |
Otras vistas |