Up-regulation of Arl4a gene expression by broccoli aqueous extract is associated with improved spermatogenesis in mouse testes
Abstract
Introduction: Broccoli (Brassica oleracea) is well known for its properties as an anticancer, antioxidant, and scavenger of free radicals. However, its benefits in enhancing spermatogenesis have not been well established.
Objective: To study broccoli aqueous extract effects on sperm factors and the expression of genes Catsper1, Catsper2, Arl4a, Sox5, and Sox9 in sperm factors in mice.
Material and methods: Male mice were divided randomly into six groups: (1) Control; (2) cadmium (3 mg/kg of mouse body weight); (3) orally treated with 200 μl broccoli aqueous extract (1 g ml-1); (4) orally treated with 400 μl of broccoli aqueous extract; (5) orally treated with 200 broccoli aqueous extract plus cadmium, and (6) orally treated with 400 μl of broccoli aqueous extract plus cadmium. We analyzed the sperms factors and Catsper1, Catsper2, Arl4a, Sox5, and Sox9 gene expression.
Results: An obvious improvement in sperm count and a slight enhancement in sperm motility were observed in mice treated with broccoli extract alone or with cadmium. Sperm viability was reduced by broccoli extract except for the 200 μl dose with cadmium, which significantly increased it. Interestingly, Arl4a gene expression increased in the 400 μl broccoli-treated group. Likewise, the Arl4a mRNA level in mice treated with cadmium and 200 μl of broccoli extract was higher than in the cadmium-treated mice. Furthermore, broccoli extract enhanced the mRNA level of Catsper2 and Sox5 genes in mice treated with 200 μl and 400 μl broccoli extract plus cadmium compared with the group treated solely with cadmium.
Conclusion: The higher sperm count in broccoli-treated mice opens the way for the development of pharmaceutical products for infertile men.
Downloads
References
Kumar N, Singh AK. Trends of male factor infertility, an important cause of infertility: A review of literature. J Human Reprod Sci. 2015;8:191-6. https://doi.org/10.4103/0974-1208.170370
Kim DR, Kim HY, Kim HY, Chang MS, Park SK. Trigonellae semen enhances sperm motility and the expression of the cation sperm channel proteins in mouse testes. Evid Based Complementary Altern Med. 2015 ;2015:817324. https://doi.org/10.1155/2015/817324
Park WS, Shin DY, Yang WM, Chang MS, Park SK. Korean ginseng induces spermatogenesis in rats through the activation of cAMP-responsive element modulator (CREM). Fertil Steril. 2007;88:1000-2. https://doi.org/10.1016/j.fertnstert.2006.12.014
Yang WM, Park SY, Kim HM, Park EH, Park SK, Chang MS. Effects of Panax ginseng on glial cell-derived neurotrophic factor (GDNF) expression and spermatogenesis in rats. Phytother Res. 2011;25:308-11. https://doi.org/10.1002/ptr.3239
Awoniyi DO, Aboua YG, Marnewick J, Brooks N. The effects of rooibos (Aspalathus linearis), green tea (Camellia sinensis) and commercial rooibos and green tea supplements on epididymal sperm in oxidative stress-induced rats. Phytother Res. 2012;26:1231-9. https://doi.org/10.1002/ptr.3717
Bae WJ, Ha U, Choi JB, Kim KS, Kim SJ, Cho HJ, et al. Protective effect of decursin extracted from Angelica gigas in male infertility via Nrf2/HO-1 signaling pathway. Oxid Med Cell Longev. 2016;2016:5901098. https://doi.org/10.1155/2016/5901098
Yari A, Sarveazad A, Asadi E, Raouf Sarshoori J, Babahajian A, Amini N, et al. Efficacy of Crocus sativus L. on reduction of cadmium-induced toxicity on spermatogenesis in adult rats. Andrologia. 2016;48:1244-52. https://doi.org/10.1111/and.12568
Park EH, Do Rim Kim HY, Park SK, Chang MS. Panax ginseng induces the expression of CatSper genes and sperm hyperactivation. Asian J Androl. 2014;16:845. https://doi.org/10.4103/1008-682X.129129
Sun XH, Zhu YY, Wang L, Liu HL, Ling Y, Li ZL, et al. The Catsper channel and its roles in male fertility: A systematic review. Reprod Biol Endocrinol. 2017;15:1-2. https://doi.org/10.1186/s12958-017-0281-2
Kensler TW, Egner PA, Agyeman AS, Visvanathan K, Groopman JD, Chen JG, et al. Keap1–nrf2 signaling: A target for cancer prevention by sulforaphane. Top Curr Chem. 2013;329:163-77. https://doi.org/10.1007/128_2012_339
Yang SH, Yu LH, Li L, Guo Y, Zhang Y, Long M, et al. Protective mechanism of sulforaphane on cadmium-induced sertoli cell injury in mice testis via Nrf2/ARE signaling pathway. Molecules. 2018;23:1774. https://doi.org/10.3390/molecules23071774
Fahey JW, Wehage SL, Holtzclaw WD, Kensler TW, Egner PA, Shapiro TA, et al. Protection of humans by plant glucosinolates: Efficiency of conversion of glucosinolates to isothiocyanates by the gastrointestinal microflora. Cancer Pre Res. 2012;5:603-11. https://doi.org/10.1158/1940-6207.CAPR-11-0538
López-Romero D, Izquierdo-Vega JA, Morales-González JA, Madrigal-Bujaidar E, Chamorro-Cevallos G, Sánchez-Gutiérrez M, et al. Evidence of some natural products with antigenotoxic effects. Part 2: plants, vegetables, and natural resin. Nutrients. 2018;10:1954. https://doi.org/10.3390/nu10121954
Conzatti A, da Silva Fróes FC, Perry ID, de Souza CG. Clinical and molecular evidence of the consumption of broccoli, glucoraphanin and sulforaphane in humans. Nutr Hosp. 2015;31:559-69. https://doi.org/10.3305/nh.2015.31.2.7685
Senanayake GV, Banigesh A, Wu L, Lee P, Juurlink BH. The dietary phase 2 protein inducer sulforaphane can normalize the kidney epigenome and improve blood pressure in hypertensive rats. Am J Hypertens. 2012;25:229-35. https://doi.org/10.1038/ajh.2011.200
Dinkova-Kostova AT, Kostov RV. Glucosinolates and isothiocyanates in health and disease. Trends Mol Med. 2012;18:337-47. https://doi.org/10.1016/j.molmed.2012.04.003
Kerns ML, DePianto D, Dinkova-Kostova AT, Talalay P, Coulombe PA. Reprogramming of keratin biosynthesis by sulforaphane restores skin integrity in epidermolysis bullosa simplex. Proc Natl Acad Sci. 2007;104:14460-5. https://doi.org/10.1073/pnas.0706486104
Yanaka A, Fahey JW, Fukumoto A, Nakayama M, Inoue S, Zhang S, et al. Dietary sulforaphane-rich broccoli sprouts reduce colonization and attenuate gastritis in Helicobacter pylori–infected mice and humans. Cancer Pre Res. 2009;2:353-60. https://doi.org/10.1158/1940-6207.CAPR-08-0192
Singh K, Connors SL, Macklin EA, Smith KD, Fahey JW, Talalay P, et al. Sulforaphane treatment of autism spectrum disorder (ASD). Proc Natl Acad Sci. 2014;111:15550-5. https://doi.org/10.1073/pnas.1416940111
Duruibe JO, Ogwuegbu MO, Egwurugwu JN. Heavy metal pollution and human biotoxic effects. Int J Phys Sci. 2007;2:112-8. https://doi.org/10.5897/IJPS.9000289
Mishra S, Bharagava RN, More N, Yadav A, Zainith S, Mani S, et al. Heavy metal contamination: An alarming threat to environment and human health. In: Sobti R, Arora N, Kothari R, editors. Environmental biotechnology: For sustainable future. Singapore: Springer, 2019. p. 103-25. https://doi.org/10.1007/978-981-10-7284-0_5
Schürmann A, Koling S, Jacobs S, Saftig P, Krauss S, Wennemuth G, et al. Reduced sperm count and normal fertility in male mice with targeted disruption of the ADP-ribosylation factorlike 4 (Arl4) gene. Mol Cell Biol. 2002;22:2761-8. https://doi.org/10.1128/MCB.22.8.2761-2768.2002
Pereira R, Sá R, Barros A, Sousa M. Major regulatory mechanisms involved in sperm motility. Asian J Androl. 2017;19:5. https://doi.org/10.4103/1008-682X.167716
She ZY, Yang WX. SOX family transcription factors involved in diverse cellular events during development. Eur J Cell Biol. 2015;94:547-63. https://doi.org/10.1016/j.ejcb.2015.08.002
Fahey JW, Zhang Y, Talalay P. Broccoli sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci USA. 1997;94:10367-72. https://doi.org/10.1073/pnas.94.19.10367
World Health Organization. WHO laboratory manual for the examination and processing of human semen. Fifth edition. Switzerland: WHO Press; 2010. p. 286.
Mohammadi S, Movahedin M, Mowla SJ. Up-regulation of CatSper genes family by selenium. Reprod Biol Endocrinol. 2009;7:126. https://doi.org/10.1186/1477-7827-7-126
Suzuki N, Mizuniwa C, Ishii K, Nakagawa Y, Tsuji K, Muneta T, et al. Teneurin-4, a transmembrane protein, is a novel regulator that suppresses chondrogenic differentiation. J Orthop Res. 2014;32:915-22. https://doi.org/10.1002/jor.22616
Shiota M, Heike T, Haruyama M, Baba S, Tsuchiya A, Fujino H, et al. Isolation and characterization of bone marrow-derived mesenchymal progenitor cells with myogenic and neuronal properties. Exp Cell Res. 2007;313:1008-23. https://doi.org/10.1016/j.yexcr.2006.12.017
Zuberi K, Franz M, Rodriguez H, Montojo J, Lopes CT, Bader GD, et al. GeneMANIA prediction server 2013 update. Nucleic acids Res. 2013;41:W115-22. https://doi.org/10.1093/nar/gkt533
Khademi N, Raeeszadeh M, Allahveisi A. Effect of different concentrations of hydroalcoholic extract of broccoli on sperm parameters and oxidative stress factors before and after thawing in NMRI mice. J Shahid Sadoughi Univ Med Sci. 2019;26:921-33. http://dx.doi.org/10.18502/ssu.v26i10.482
Raeeszadeh M, Khademi N, Akbari A. The effects of broccoli and caraway extracts on serum oxidative markers, testicular structure and function, and sperm quality before and after sperm cryopreservation. Cryobiology. 2021;99:11-9. https://doi.org/10.1016/j.cryobiol.2021.02.003
Turner LM, Harr B. Genome-wide mapping in a house mouse hybrid zone reveals hybrid sterility loci and Dobzhansky-Muller interactions. eLife. 2014;3:e02504. https://doi.org/10.7554/eLife.02504
Zhou Y, Yang H, Li Y, Lynch B, Jia X. Broccoli seed extract: Genotoxicity and subchronic toxicity studies. Regul Toxicol Pharm. 2015;73:442-51. https://doi.org/10.1016/j.yrtph.2015.08.003
Kim J, Kwon JT, Jeong J, Kim J, Hong SH, Kim J, et al. SPATC 1L maintains the integrity of the sperm head-tail junction. EMBO Rep. 2018;19:e45991. https://doi.org/10.15252/embr.201845991
Hogarth CA, Calanni S, Jans DA, Loveland KL. Importin α mRNAs have distinct expression profiles during spermatogenesis. Dev Dyn. 2006;235:253-62. https://doi.org/10.1002/dvdy.20569
Major AT, Whiley PA, Loveland KL. Expression of nucleocytoplasmic transport machinery: Clues to regulation of spermatogenic development. Biochim Biophys Acta Mol Cell Res. 2011;1813:1668-88. https://doi.org/10.1016/j.bbamcr.2011.03.008
Han F, Liu C, Zhang L, Chen M, Zhou Y, Qin Y, et al. Globozoospermia and lack of acrosome formation in GM130-deficient mice. Cell Death Dis. 2018;8:e2532. https://doi.org/10.1038/cddis.2016.414
Hou CC, Yang WX. New insights to the ubiquitin–proteasome pathway (UPP) mechanism during spermatogenesis. Mol Biol Rep. 2013;40:3213-30. https://doi.org/10.1007/s11033-012-2397-y
Xia Y, Huang N, Chen Z, Li F, Fan G, Ma D, et al. CCDC102B functions in centrosome linker assembly and centrosome cohesion. J Cell Sci. 2018;131:jcs222901. https://doi.org/10.1242/jcs.222901
Nogales-Cadenas R, Abascal F, Díez-Pérez J, Carazo JM, Pascual-Montano A. CentrosomeDB: A human centrosomal proteins database. Nucleic acids Res. 2009;37:D175-80. https://doi.org/10.1093/nar/gkn815
Jacobs S, Schürmann A, Becker W, Böckers TM, Copeland NG, Jenkins NA, et al. The mouse ADP-ribosylation factor-like 4 gene: Two separate promoters direct specific transcription in tissues and testicular germ cell. Biochem J. 1998;335:259-65. https://doi.org/10.1042/bj3350259
Finley JW. Reduction of cancer risk by consumption of selenium-enriched plants: Enrichment of broccoli with selenium increases the anticarcinogenic properties of broccoli. J Med Food. 2003;6:19-26. https://doi.org/10.1089/109662003765184714
Finley JW, Sigrid-Keck A, Robbins RJ, Hintze KJ. Selenium enrichment of broccoli: Interactions between selenium and secondary plant compounds. J Nutr. 2005;135:1236-8. https://doi.org/10.1093/jn/135.5.1236
Qazi IH, Angel C, Yang H, Zoidis E, Pan B, Wu Z, et al. Role of selenium and selenoproteins in male reproductive function: A review of past and present evidences. Antioxidants. 2019;8:268. https://doi.org/10.3390/antiox8080268
Kheradmand N, Kamkar R, Moshajjari M, Baazm M. Effect of selenium and pentoxifylline on expression of CATSPER1 and 2 genes and FSH/LH levels in treated mice by dexamethasone. Andrologia. 2019;51:e13279. https://doi.org/10.1111/and.13279
Wang HF, Chang M, Peng TT, Yang Y, Li N, Luo T, et al. Exposure to cadmium impairs sperm functions by reducing CatSper in mice. Cell Physiol Biochem. 2017;42:44-54. https://doi.org/10.1159/000477113
Mohammadi S, Gholamin M, Mansouri A, Mahmoodian RS, Babazadeh B, Kebriaei SM, et al. Effect of cadmium and nickel on expression of CatSper 1 and 2 genes in mice. Toxin Rev. 2018;37:216-22. https://doi.org/10.1080/15569543.2017.1350192
Jiménez-Badillo SE, Oviedo N, Hernández-Guzmán C, González-Mariscal L, Hernández-Sánchez J. Catsper1 promoter is bidirectional and regulates the expression of a novel lncRNA. Sci Rep. 2017;7:1-2. https://doi.org/10.1038/s41598-017-13867-2
Mata-Rocha M, Hernández-Sánchez J, Guarneros G, de la Chesnaye E, Sánchez-Tusié AA, Treviño CL, et al. The transcription factors Sox5 and Sox9 regulate Catsper1 gene expression. FEBS Lett. 2014;588:3352-60. https://doi.org/10.1016/j.febslet.214.07.024
Liu X, Zheng J, Xue Y, Qu C, Chen J, Wang Z, et al. Inhibition of TDP43-mediated SNHG12-miR-195-SOX5 feedback loop impeded malignant biological behaviors of glioma cells. Mol Ther Nucleic Acids. 2018;10:142-58. https://doi.org/10.1016/j.omtn.2017.12.001
Koh E, Wimalasiri KM, Chassy AW, Mitchell AE. Content of ascorbic acid, quercetin, kaempferol and total phenolics in commercial broccoli. J Food Compost Anal. 2009;22:637-43. https://doi.org/10.1016/j.jfca.2009.01.019
Jia Y, Lin J, Mi Y, Zhang C. Quercetin attenuates cadmium-induced oxidative damage and apoptosis in granulosa cells from chicken ovarian follicles. Reprod Toxicol. 2011;31:477-85. https://doi.org/10.1016/j.reprotox.2010.12.057
Moretti E, Mazzi L, Terzuoli G, Bonechi C, Iacoponi F, Martini S, et al. Effect of quercetin, rutin, naringenin and epicatechin on lipid peroxidation induced in human sperm. Reprod Toxicol. 2012;34:651-7. https://doi.org/10.1016/j.reprotox.2012.10.002
Ranawat P, Pathak CM, Khanduja KL. A new perspective on the quercetin paradox in male reproductive dysfunction. Phytother Res. 2013;27:802-10. https://doi.org/10.1002/ptr.4799
Liu CM, Ma JQ, Xie WR, Liu SS, Feng ZJ, Zheng GH, et al. Quercetin protects mouse liver against nickel-induced DNA methylation and inflammation associated with the Nrf2/HO-1 and p38/STAT1/NF-κB pathway. Food Chem Toxicol. 2015;82:19-26. https://doi.org/10.1016/j.fct.2015.05.001
Qiu W, Lin J, Zhu Y, Zhang J, Zeng L, Su M, et al. Kaempferol modulates DNA methylation and downregulates DNMT3B in bladder cancer. Cell Physiol Biochem. 2017;41:1325-35. https://doi.org/10.1159/000464435
Imran M, Rauf A, Shah ZA, Saeed F, Imran A, Arshad MU, et al. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review. Phytother Res. 2019;33:263-75. https://doi.org/10.1002/ptr.6227
Zhang C, Su ZY, Khor TO, Shu L, Kong AN. Sulforaphane enhances Nrf2 expression in prostate cancer TRAMP C1 cells through epigenetic regulation. Biochem Pharmacol. 2013;85:1398-404. https://doi.org/10.1016/j.bcp.2013.02.010
Yang SH, Long M, Yu LH, Li L, Li P, et al. Sulforaphane prevents testicular damage in Kunming mice exposed to cadmium via activation of Nrf2/ARE signaling pathways. Int J Mol Sci. 2016;17:1703. https://doi.org/10.3390/ijms17101703
Alkharashi NA, Periasamy VS, Athinarayanan J, Alshatwi AA. Assessment of sulforaphaneinduced protective mechanisms against cadmium toxicity in human mesenchymal stem cells. Environ Sci Pollut Res. 2018;25:10080-9. https://doi.org/10.1007/s11356-018-1228-7
Liang J, Hänsch GM, Hübner K, Samstag Y. Sulforaphane as anticancer agent: A doubleedged sword? Tricky balance between effects on tumor cells and immune cells. Adv Biol Regul. 2019;71:79-87. https://doi.org/10.1016/j.jbior.2018.11.006
Some similar items:
- Andrés F. Londoño, Silvana Levis, Juan D. Rodas, Hantavirus as important emerging agents in South America , Biomedica: Vol. 31 No. 3 (2011)
- Jeison Monroy-Gómez, Orlando Torres-Fernández, Calbindin and parvalbumin distribution in spinal cord of normal and rabies-infected mice , Biomedica: Vol. 33 No. 4 (2013)
- Anais Castellar, Marco Guevara, Juan D. Rodas, Andrés F. Londoño, Esteban Arroyave, Francisco J. Díaz, Silvana Levis, Pedro J. Blanco, First evidence of lymphocytic choriomeningitis virus (Arenavirus) infection in Mus musculus rodents captured in the urban area of the municipality of Sincelejo, Sucre, Colombia , Biomedica: Vol. 37 No. Sup.1 (2017): Suplemento 1, Alteraciones del sistema nervioso
- Gerardo Santamaria, Jeison Monroy-Gómez, Orlando Torres-Fernández, Neuroanatomical evidence of the transport of the rabies virus through the propriospinal tract in the spinal cord of mice , Biomedica: Vol. 38 No. 2 (2018)
- Fernando Ucan-Euan, Silvia Hernández-Betancourt, Madeleine Arjona-Torres, Alonso Panti-May, Marco Torres-Castro, Histopathological study in cardiac tissue of rodents infected with Trypanosoma cruzi, captured in suburbs of Mérida, México , Biomedica: Vol. 39 No. Supl. 2 (2019): Enfermedades transmisibles en el trópico, agosto
- Alejandra Mariel Canalis, Roberto Daniel Pérez, Gisele Evangelina Falchini, Elio Andrés Soria, Experimental acute arsenic toxicity in Balb/c mice: organic markers and splenic involvement , Biomedica: Vol. 41 No. 1 (2021)
- Noelia Mendoza, Español Español, Español Español, Eggshell membrane treatment for the healing of superficial open wounds in mice , Biomedica: Vol. 42 No. 2 (2022)

Article metrics | |
---|---|
Abstract views | |
Galley vies | |
PDF Views | |
HTML views | |
Other views |