Effects of the severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV) on the nervous system. What can we expect from SARS -CoV-2?
Abstract
Coronaviruses cause respiratory and gastrointestinal disorders in animals and humans. The current SARS-CoV-2, the COVID-19 infectious agent, belongs to a subgroup called betacoronavirus including the SARS-CoV and MERS-CoV responsible for epidemics in 2002 and 2012, respectively.
These viruses can also infect the nervous system due to their affinity for the human angiotensin-converting enzyme 2 (ACE2) expressed in neurons and glial cells. Infections with SARS-CoV, MERS-CoV, and now SARS-CoV-2 also produce neurological signs such as acute cerebrovascular disease, impaired consciousness, and muscle injury, as well as dizziness, hypogeusia, hyposmia, hypoxia, neuralgia, and hypoxic encephalopathy. For this reason, close attention should be paid to the neurological manifestations of COVID-19 patients.
Downloads
References
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17:181-92. https://doi.org/10.1038/s41579-018-0118-9
Máttar S, González M. Emergencia zoonótica por coronavirus: riesgo potencial para la salud pública en América Latina. Revista MVZ Córdoba. 2018;23:6775-7. http://dx.doi.org/10.21897/rmvz.1408
van der Hoek L. Human coronaviruses, what do they cause. Antivir Ther. 2007;12:651-8.
Lim YX, Ng YL, Tam JP, Liu DX. Human coronaviruses: A review of virus-host interactions. Diseases. 2016;4:26. https://doi.org/10.3390/diseases4030026
Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;109:102433. https://doi.org/10.1016/j.jaut.2020.102433
Yu F, Du L, Ojcius DM, Pan C, Jiang S. Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan. Microbes Infect. 2020;22:74-9. https://doi.org/10.1016/j.micinf.2020.01.003
Lau SK, Chan JF. Coronaviruses: Emerging and re-emerging pathogens in humans and animals. Virol J. 2015;2:209. https://doi.org/10.1186/s12985-015-0432-z
Desforges M, Le Coupanec A, Dubeau P, Bourgouin A, Lajoie L, Dubé M, et al. Human coronaviruses and other respiratory viruses: Underestimated opportunistic pathogens of the central nervous system? Viruses. 2019;12:14. https://doi.org/10.3390/v12010014
Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92:552-5. https://doi.org/10.1002/jmv.25728
Hwang CS. Olfactory neuropathy in severe acute respiratory syndrome: Report of a case. Acta Neurol Taiwan. 2006;15:26-8.
Stainsby B, Howitt S, Porr J. Neuromusculoskeletal disorders following SARS: A case series. J Can Chiropr Assoc. 2011;55:32-9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3044805/
Guo Y, Korteweg C, McNutt MA, Gu J. Pathogenetic mechanisms of severe acute respiratory syndrome. Virus Res. 2008;133:4-12. https://doi.org/10.1016/j.virusres.2007.01.022
Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol. 2007;170:1136-4. https://doi.org/10.2353/ajpath.2007.061088
Xu J, Zhong S, Liu J, Li L, Li Y, Wu X, et al. Detection of severe acute respiratory syndrome coronavirus in the brain: Potential role of the chemokine mig in pathogenesis. Clin Infect Dis. 2005;41:1089-96. https://doi.org/10.1086/444461
Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82:7264-75. https://doi.org/10.1128/JVI.00737-08
Tseng CT, Huang C, Newman P, Wang N, Narayanan K, Watts DM, et al. Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human angiotensinconverting enzyme 2 virus receptor. J Virol. 2007;81:1162-73. https://doi.org/10.1128/JVI.01702-06
Arabi YM, Harthi A, Hussein J, Bouchama A, Johani S, Hajeer AH, et al. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV). Infection. 2015;43:495-501. https://doi.org/10.1007/s15010-015-0720-y
Al-Hameed FM. Spontaneous intracranial hemorrhage in a patient with Middle East respiratory syndrome coronavirus. Saudi Med J. 2017;38:196-200. https://doi.org/10.15537/smj.2017.2.16255
Kim JE, Heo JH, Kim HO, Song SH, Park SS. Neurological complications during treatment of Middle East respiratory syndrome. J Clin Neurol. 2017;13:227-33. https://doi.org/10.3988/jcn.2017.13.3.227
Li K, Wohlford-Lenane C, Perlman S, Zhao J, Jewell AK. Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis. 2016;213:712-22. https://doi.org/10.1093/infdis/jiv499
Giwa AL, Desai A, Duca A. Novel 2019 coronavirus SARS-CoV-2 (COVID-19): An updated overview for emergency clinicians. Emerg Med Pract. 2020;22:1-28
Hsu LY, Chia PY, Lim JF. The novel coronavirus (SARS-CoV-2) epidemic. Ann Acad Med Singapore. 2020;49:1-3.
WHO. Coronavirus disease (COVID-19) outbreak situation. World Health Organization. Fecha de consulta: 11 de agosto de 2020. Disponible en: https://www.who.int/emergencies/diseases/novel-coronavirus-2019
Guery B, Poissy J, el Mansouf L, Séjourné C, Ettahar N, Lamaire X, et al. Clinical features and viral diagnosis of two cases of infection with Middle East respiratory syndrome coronavirus: A report of nosocomial transmission. Lancet. 2013;381:2265-72. https://doi.org/10.1016/S0140-6736(13)60982-4
Cheng H, Wang Y, Wang GQ. Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. J Med Virol. 2020;92:726-30. https://doi.org/10.1002/jmv.25785
Ortega JT, Serrano ML, Pujol FH, Rangel HR. Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: An in silico analysis. EXCLI J. 2020;19:410-7. https://doi.org/10.17179/excli2020-1167
Cao Y, Li L, Feng Z, Wam S, Huang P, Sun X, et al. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 2020;6:1-4. https://doi.org/10.1038/s41421-020-0147-1
Li M-Y, Li L, Zhang Y, Wang X-S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020;9:1-7. https://doi.org/10.1186/s40249-020-00662-x
Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77:1-9. https://doi.org/10.1001%2Fjamaneurol.2020.1127
Bender-del-Busto J, León-Castellón R, Mendieta-Pedroso M, Rodríguez-Labrada R, Velázquez-Pérez L. Infección por el SARS-CoV-2: de los mecanismos neuroinvasivos a las manifestaciones neurológicas. Anales de la Academia de Ciencias de Cuba. 2020;10.
Bourgonje AR, Abdulle AE, Timens W, Hillebrands JL, Navis GJ, Gordijn SJ, et al. Angiotensin-converting enzyme-2 (ACE2), SARS-CoV-2 and pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol. 2020;17:10. https://doi.org/10.1002/path.5471
Moriguchi T, Harii N, Goto J, Harada D, Sugawara H, Takamino J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 2020;94:54-8. https://doi.org/10.1016%2Fj.ijid.2020.03.062
Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020;11:995-8. https://doi.org/10.1021/acschemneuro.0c00122
Natoli S, Oliveira V, Calabresi P, Maia L, Pisani A. Does SARS-Cov-2 invade the brain? Translational lessons from animal models. Eur J Neurol. 2020. https://doi.org/10.1111/ene.14277
Mao L, Wang M, Chen S, He Q, Chang J, Candong H, et al. Neurological manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77:1-9. https://doi:10.1001/jamaneurol.2020.1127
Paybast S, Emami A, Koosha M, Baghalha F. Novel coronavirus disease (COVID-19) and central nervous system complications: What neurologist need to know. Acta Neurol Taiwan. 2020;29:24-31.
Chen T, Wu D, Chen H, Yan W, Yang D. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ. 2020;368. https://doi.org/10.1136/bmj.m1091
Asadi-Pooya A, Simani, L. Central nervous system manifestations of COVID-19: A systematic review. J Neurol Sci. 2020;413:116832. https://doi.org/10.1016/j.jns.2020.116832
Li H, Xue Q, Xu X. Involvement of the nervous system in SARS-CoV-2 Infection. Neurotox Res. 2020;38:1-7. https://doi.org/10.1007%2Fs12640-020-00219-8
Koralnik IJ, Tyler KL. COVID-19: A global threat to the nervous system. Ann Neurol. 2020;88:1-11. https://doi.org/10.1002%2Fana.25807
Zubair A, McAlpine L, Gardin T, Farhadian S, Kuruvilla D, Spudich S. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: A review. JAMA Neurol. 2020;77:1018-27. https://doi.org/10.1001/jamaneurol.2020.2065
DosSantos MF, Devalle S, Aran V, Capra D, Roque N, Coelho-Aguiar J, et al. Neuromechanisms of SARS-CoV-2: A review. Front Neuroanat. 2020;14:37. https://doi.org/10.3389%2Ffnana.2020.00037
Varatharaj A, Thomas N, Ellul MA, Davies N, Pollak T, Tenorio E, et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: A UK-wide surveillance study. Lancet Psychiatry. 2020;S2215-0366:30287-X. https://doi.org/10.1016%2FS2215-0366(20)30287-X
Zhou L, Zhang M, Gao J, Wang J. Sars-Cov-2: Underestimated damage to nervous system. Travel Med Infect Dis. 2020;101642. https://doi.org/10.1016/j.tmaid.2020.101642
Carod-Artal FJ. Neurological complications of coronavirus and Covid-19. Rev Neurol 2020;70:311-22. https://doi:10.33588/rn.7009.2020179
Some similar items:
- Yiby Forero, Gina E. Morales, Edgar Benítez, Comparison of two methodologies used for determining metabolic syndrome in adult population , Biomedica: Vol. 33 No. 2 (2013)
- Carolina Guerra, Carlos Santiago Uribe, Alejandro Guerra, Olga H. Hernández, Bickerstaff brain encephalitis: case report and review , Biomedica: Vol. 33 No. 4 (2013)
- José Moreno-Montoya, The challenge of communicating and controlling the coronavirus epidemic , Biomedica: Vol. 40 No. 1 (2020)
- Juan Pimentel, Neil Andersson, Chloroquine and its derivatives in the management of COVID-19: A scoping review , Biomedica: Vol. 40 No. Supl. 2 (2020): SARS-CoV-2 y COVID-19
- Marco Torres-Castro, Biol. Naomi Cuevas, Dra. Silvia Hernández, IBQ. Henry Noh, Biol. Erendira Estrella, M. en C. Belén Herrera, Dr. Alonso Panti, Dr. Etienne Waleckx, M. en C. Javier Sosa, Dr. Ronald Peláez, Natural infection with Trypanosoma cruzi in bats captured in Campeche and Yucatán, México , Biomedica: Vol. 41 No. Supl. 1 (2021): Mayo, Parasitología médica
- Patricia Escandón, Shawn R. Lockhart, Nancy A. Chow, Tom M. Chiller, Candida auris: a global pathogen that has taken root in Colombia , Biomedica: Vol. 43 No. Sp. 1 (2023): Agosto, Micología médica
- Ana María Navarro , Gabriela Mantilla, Jorge Andrés Fernández , Mario Fernando Unigarro, Alfonso Suárez , María Claudia Ortega , Severe immunodeficiency spectrum associated with NHEJ1 gene mutation: Cernunnos/XLF deficiency , Biomedica: Vol. 44 No. Sp. 2 (2024): Inmunología clínica

Article metrics | |
---|---|
Abstract views | |
Galley vies | |
PDF Views | |
HTML views | |
Other views |