Efectos de los coronavirus del síndrome respiratorio agudo grave (SARS-CoV) y del síndrome respiratorio del Medio Oriente (MERS-CoV) en el sistema nervioso. ¿Qué esperar del SARS-CoV-2?
Resumen
Los coronavirus son una familia de virus que se caracterizan por producir afectaciones respiratorias y gastrointestinales en animales y en seres humanos. El actual SARS-CoV-2, agente infeccioso de la COVID-19, pertenece a un subgrupo denominado betacoronavirus del que hacen parte el SARS-CoV y MERS-CoV, virus responsables de epidemias en el 2002 y el 2012, respectivamente.
Estos virus también pueden infectar el sistema nervioso debido a su afinidad con la enzima convertidora de angiotensina humana 2 (ACE2), la cual se expresa en neuronas y células gliales. Se ha demostrado que las infecciones con SARS-CoV y MERS-CoV, y ahora también con el SARS-CoV-2, ocasionan condiciones neurológicas como la enfermedad cerebrovascular aguda, la conciencia alterada y las lesiones musculares, así como mareos, hipogeusia, hiposmia, hipoxia, neuralgia y encefalopatía hipóxica. Por ello debe prestarse mucha atención a las manifestaciones neurológicas de los pacientes de COVID-19.
Descargas
Referencias bibliográficas
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17:181-92. https://doi.org/10.1038/s41579-018-0118-9
Máttar S, González M. Emergencia zoonótica por coronavirus: riesgo potencial para la salud pública en América Latina. Revista MVZ Córdoba. 2018;23:6775-7. http://dx.doi.org/10.21897/rmvz.1408
van der Hoek L. Human coronaviruses, what do they cause. Antivir Ther. 2007;12:651-8.
Lim YX, Ng YL, Tam JP, Liu DX. Human coronaviruses: A review of virus-host interactions. Diseases. 2016;4:26. https://doi.org/10.3390/diseases4030026
Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;109:102433. https://doi.org/10.1016/j.jaut.2020.102433
Yu F, Du L, Ojcius DM, Pan C, Jiang S. Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan. Microbes Infect. 2020;22:74-9. https://doi.org/10.1016/j.micinf.2020.01.003
Lau SK, Chan JF. Coronaviruses: Emerging and re-emerging pathogens in humans and animals. Virol J. 2015;2:209. https://doi.org/10.1186/s12985-015-0432-z
Desforges M, Le Coupanec A, Dubeau P, Bourgouin A, Lajoie L, Dubé M, et al. Human coronaviruses and other respiratory viruses: Underestimated opportunistic pathogens of the central nervous system? Viruses. 2019;12:14. https://doi.org/10.3390/v12010014
Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92:552-5. https://doi.org/10.1002/jmv.25728
Hwang CS. Olfactory neuropathy in severe acute respiratory syndrome: Report of a case. Acta Neurol Taiwan. 2006;15:26-8.
Stainsby B, Howitt S, Porr J. Neuromusculoskeletal disorders following SARS: A case series. J Can Chiropr Assoc. 2011;55:32-9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3044805/
Guo Y, Korteweg C, McNutt MA, Gu J. Pathogenetic mechanisms of severe acute respiratory syndrome. Virus Res. 2008;133:4-12. https://doi.org/10.1016/j.virusres.2007.01.022
Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol. 2007;170:1136-4. https://doi.org/10.2353/ajpath.2007.061088
Xu J, Zhong S, Liu J, Li L, Li Y, Wu X, et al. Detection of severe acute respiratory syndrome coronavirus in the brain: Potential role of the chemokine mig in pathogenesis. Clin Infect Dis. 2005;41:1089-96. https://doi.org/10.1086/444461
Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82:7264-75. https://doi.org/10.1128/JVI.00737-08
Tseng CT, Huang C, Newman P, Wang N, Narayanan K, Watts DM, et al. Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human angiotensinconverting enzyme 2 virus receptor. J Virol. 2007;81:1162-73. https://doi.org/10.1128/JVI.01702-06
Arabi YM, Harthi A, Hussein J, Bouchama A, Johani S, Hajeer AH, et al. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV). Infection. 2015;43:495-501. https://doi.org/10.1007/s15010-015-0720-y
Al-Hameed FM. Spontaneous intracranial hemorrhage in a patient with Middle East respiratory syndrome coronavirus. Saudi Med J. 2017;38:196-200. https://doi.org/10.15537/smj.2017.2.16255
Kim JE, Heo JH, Kim HO, Song SH, Park SS. Neurological complications during treatment of Middle East respiratory syndrome. J Clin Neurol. 2017;13:227-33. https://doi.org/10.3988/jcn.2017.13.3.227
Li K, Wohlford-Lenane C, Perlman S, Zhao J, Jewell AK. Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis. 2016;213:712-22. https://doi.org/10.1093/infdis/jiv499
Giwa AL, Desai A, Duca A. Novel 2019 coronavirus SARS-CoV-2 (COVID-19): An updated overview for emergency clinicians. Emerg Med Pract. 2020;22:1-28
Hsu LY, Chia PY, Lim JF. The novel coronavirus (SARS-CoV-2) epidemic. Ann Acad Med Singapore. 2020;49:1-3.
WHO. Coronavirus disease (COVID-19) outbreak situation. World Health Organization. Fecha de consulta: 11 de agosto de 2020. Disponible en: https://www.who.int/emergencies/diseases/novel-coronavirus-2019
Guery B, Poissy J, el Mansouf L, Séjourné C, Ettahar N, Lamaire X, et al. Clinical features and viral diagnosis of two cases of infection with Middle East respiratory syndrome coronavirus: A report of nosocomial transmission. Lancet. 2013;381:2265-72. https://doi.org/10.1016/S0140-6736(13)60982-4
Cheng H, Wang Y, Wang GQ. Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. J Med Virol. 2020;92:726-30. https://doi.org/10.1002/jmv.25785
Ortega JT, Serrano ML, Pujol FH, Rangel HR. Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: An in silico analysis. EXCLI J. 2020;19:410-7. https://doi.org/10.17179/excli2020-1167
Cao Y, Li L, Feng Z, Wam S, Huang P, Sun X, et al. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 2020;6:1-4. https://doi.org/10.1038/s41421-020-0147-1
Li M-Y, Li L, Zhang Y, Wang X-S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020;9:1-7. https://doi.org/10.1186/s40249-020-00662-x
Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77:1-9. https://doi.org/10.1001%2Fjamaneurol.2020.1127
Bender-del-Busto J, León-Castellón R, Mendieta-Pedroso M, Rodríguez-Labrada R, Velázquez-Pérez L. Infección por el SARS-CoV-2: de los mecanismos neuroinvasivos a las manifestaciones neurológicas. Anales de la Academia de Ciencias de Cuba. 2020;10.
Bourgonje AR, Abdulle AE, Timens W, Hillebrands JL, Navis GJ, Gordijn SJ, et al. Angiotensin-converting enzyme-2 (ACE2), SARS-CoV-2 and pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol. 2020;17:10. https://doi.org/10.1002/path.5471
Moriguchi T, Harii N, Goto J, Harada D, Sugawara H, Takamino J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 2020;94:54-8. https://doi.org/10.1016%2Fj.ijid.2020.03.062
Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020;11:995-8. https://doi.org/10.1021/acschemneuro.0c00122
Natoli S, Oliveira V, Calabresi P, Maia L, Pisani A. Does SARS-Cov-2 invade the brain? Translational lessons from animal models. Eur J Neurol. 2020. https://doi.org/10.1111/ene.14277
Mao L, Wang M, Chen S, He Q, Chang J, Candong H, et al. Neurological manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77:1-9. https://doi:10.1001/jamaneurol.2020.1127
Paybast S, Emami A, Koosha M, Baghalha F. Novel coronavirus disease (COVID-19) and central nervous system complications: What neurologist need to know. Acta Neurol Taiwan. 2020;29:24-31.
Chen T, Wu D, Chen H, Yan W, Yang D. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ. 2020;368. https://doi.org/10.1136/bmj.m1091
Asadi-Pooya A, Simani, L. Central nervous system manifestations of COVID-19: A systematic review. J Neurol Sci. 2020;413:116832. https://doi.org/10.1016/j.jns.2020.116832
Li H, Xue Q, Xu X. Involvement of the nervous system in SARS-CoV-2 Infection. Neurotox Res. 2020;38:1-7. https://doi.org/10.1007%2Fs12640-020-00219-8
Koralnik IJ, Tyler KL. COVID-19: A global threat to the nervous system. Ann Neurol. 2020;88:1-11. https://doi.org/10.1002%2Fana.25807
Zubair A, McAlpine L, Gardin T, Farhadian S, Kuruvilla D, Spudich S. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: A review. JAMA Neurol. 2020;77:1018-27. https://doi.org/10.1001/jamaneurol.2020.2065
DosSantos MF, Devalle S, Aran V, Capra D, Roque N, Coelho-Aguiar J, et al. Neuromechanisms of SARS-CoV-2: A review. Front Neuroanat. 2020;14:37. https://doi.org/10.3389%2Ffnana.2020.00037
Varatharaj A, Thomas N, Ellul MA, Davies N, Pollak T, Tenorio E, et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: A UK-wide surveillance study. Lancet Psychiatry. 2020;S2215-0366:30287-X. https://doi.org/10.1016%2FS2215-0366(20)30287-X
Zhou L, Zhang M, Gao J, Wang J. Sars-Cov-2: Underestimated damage to nervous system. Travel Med Infect Dis. 2020;101642. https://doi.org/10.1016/j.tmaid.2020.101642
Carod-Artal FJ. Neurological complications of coronavirus and Covid-19. Rev Neurol 2020;70:311-22. https://doi:10.33588/rn.7009.2020179
Algunos artículos similares:
- Yiby Forero, Gina E. Morales, Edgar Benítez, Comparación de dos metodologías utilizadas para la determinación del síndrome metabólico en población adulta , Biomédica: Vol. 33 Núm. 2 (2013)
- Carolina Guerra, Carlos Santiago Uribe, Alejandro Guerra, Olga H. Hernández, Encefalitis de Bickerstaff: informe de caso y revisión de la literatura , Biomédica: Vol. 33 Núm. 4 (2013)
- José Moreno-Montoya, El desafío de comunicar y controlar la epidemia por coronavirus , Biomédica: Vol. 40 Núm. 1 (2020)
- Juan Pimentel, Neil Andersson, Cloroquina y sus derivados en el manejo de la COVID-19: una revisión sistemática exploratoria , Biomédica: Vol. 40 Núm. Supl. 2 (2020): SARS-CoV-2 y COVID-19
- Marco Torres-Castro, Naomi Cuevas-Koh, Silvia Hernández-Betancourt, Henry Noh-Pech, Erendira Estrella, Belén Herrera-Flores, Jesús A. Panti-May, Etienne Waleckx, Javier Sosa-Escalante, Ronald Peláez-Sánchez, Infección natural con Trypanosoma cruzi en murciélagos capturados en Campeche y Yucatán, México , Biomédica: Vol. 41 Núm. Supl. 1 (2021): Mayo, Parasitología médica
- Patricia Escandón, Shawn R. Lockhart, Nancy A. Chow, Tom M. Chiller, Candida auris: un agente patógeno global que se ha arraigado en Colombia , Biomédica: Vol. 43 Núm. Sp. 1 (2023): Agosto, Micología médica
- Ana María Navarro , Gabriela Mantilla, Jorge Andrés Fernández , Mario Fernando Unigarro, Alfonso Suárez , María Claudia Ortega , Espectro de inmunodeficiencia grave asociada con la mutación del gen NHEJ1: deficiencia de Cernunnos XLF , Biomédica: Vol. 44 Núm. Sp. 2 (2024): Inmunología clínica

Estadísticas de artículo | |
---|---|
Vistas de resúmenes | |
Vistas de PDF | |
Descargas de PDF | |
Vistas de HTML | |
Otras vistas |