Knowledge-based clinical decision support system for the automated classification of anemia in hemodialysis patients

Sebastián Tenorio , Luis Alfonso Valderrama , José Javier Arango-Álvarez, Luz Amparo Lozano, Iván Leonardo Mojica , .

Keywords: Anemia, renal insufficiency, chronic, renal dialysis, expert systems, decision support systems, clinical, ferritins, parathyroid hormone

Abstract

Introduction. Anemia is a frequent complication in patients with chronic kidney disease undergoing hemodialysis and is associated with increased morbidity, mortality, and healthcare burden. Accurate classification is essential to optimize treatment with intravenous iron and erythropoiesis-stimulating agents. Rule-based clinical decision support systems (CDSS) provide a strategy to standardize this process.
Objective. To describe the development and implementation of a knowledge-based clinical decision support system for the automated classification of anemia in hemodialysis patients using laboratory data.
Materials and methods. This retrospective observational study included 883 adult patients receiving prevalent hemodialysis during 2023. An algorithm was developed based on established clinical guidelines [Sociedad Latinoamericana de Nefrología e Hipertensión (SLANH)], KDIGO, NICE to classify patients with hemoglobin below 12 g/dl into three categories: absolute iron deficiency, functional iron deficiency, and candidates for therapeutic trial with intravenous iron. The system also flagged cases with suspected severe secondary hyperparathyroidism (PTH > 800 pg/ml). Data was obtained from the laboratory information system and the clinical decision support system. We applied a descriptive statistical analysis.
Results. The clinical decision support system automatically classified patients into the following categories: functional iron deficiency (39.2%), severe hyperparathyroidism (26.7%), absolute iron deficiency (17.7%), and candidates for intravenous iron trial (16.4%). A subgroup (9.5% within the functional iron deficiency group) also showed elevated PTH levels, suggesting potential resistance to erythropoiesis-stimulating agents. Distinct clinical profiles were observed across the groups.
Conclusions. The clinical decision support system enabled automated and standardized classification of anemia in hemodialysis patients, supporting evidence-based clinical decision-making. Its implementation represents a digital health innovation with the potential to improve the quality and safety of anemia management in chronic kidney disease.

Downloads

Download data is not yet available.

References

Jager KJ, Kovesdy C, Langham R, Rosenberg M, Jha V, Zoccali C. A single number for advocacy and communication—Worldwide more than 850 million individuals have kidney diseases. Kidney Int. 2019;96:1048-50. https://doi.org/10.1016/j.kint.2019.07.012

Foreman KJ, Márquez N, Dolgert A, Fukutaki K, Fullman N, McGaughey M, et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death. Lancet. 2018;392:2052-90. https://doi.org/10.1016/S0140-6736(18)31694-5

Cuenta de Alto Costo. Día mundial del riñón 2022. Fecha de consulta: 17 de mayo de 2024. Disponible en: https://cuentadealtocosto.org/erc/dia-mundial-del-rinon-2022/

Cases A, Egocheaga MI, Tranche S, Pallarés V, Ojeda R, Górriz JL, et al. Anemia of chronic kidney disease: Protocol of study, management and referral to Nephrology. Nefrologia. 2018;38:8-21. https://doi.org/10.1016/j.nefro.2017.05.001

López-Gómez JM, Abad S, Vega A. New expectations in the treatment of anemia in chronic kidney disease. Nefrologia. 2016;36:232-6. https://doi.org/10.1016/j.nefro.2016.03.002

Farrington DK, Sang Y, Grams ME, Ballew SH, Dunning S, Stempniewicz N, et al. Anemia prevalence, type, and associated risks in a cohort of 5.0 million insured patients. Am J Kidney Dis. 2023;81:201-9.e1. https://doi.org/10.1053/j.ajkd.2022.08.006

Floege J, Feehally J, Johnson RJ, Tonelli O. Comprehensive Clinical Nephrology. 6th edition. Philadelphia: Elsevier; 2019. p. 1312.

Hain D, Bednarski D, Cahill M, Dix A, Foote B, Haras MS, et al. Iron-deficiency anemia in CKD: A narrative review. Kidney Med. 2023;5:100524. https://doi.org/10.1016/j.xkme.2023.100677

Carlini R, Obrador G, Campistrús N, Andrade L, Chifflet L, Bregman R, et al. First report of the SLANH anemia committee in chronic hemodialysis patients. Nefrologia. 2014;34:96-104. https://doi.org/10.3265/nefrologia.pre2013.oct.12234

Sutton RT, Pincock D, Baumgart DC, Sadowski DC, Fedorak RN, Kroeker KI. An overview of clinical decision support systems: Benefits, risks, and strategies for success. NPJ Digit Med. 2020;3:17. https://doi.org/10.1038/s41746-020-0221-y

Stevens PE, Ahmed SB, Carrero JJ, Foster B, Francis A, Hall RK, et al. KDIGO 2024 clinical practice guideline for CKD. Kidney Int. 2024;105(Suppl. 4):S117-314. https://doi.org/10.1016/j.kint.2023.10.018

Batchelor EK, Kapitsinou P, Pergola PE, Kovesdy CP, Jalal DI. Iron deficiency in chronic kidney disease: Updates on pathophysiology, diagnosis, and treatment. J Am Soc Nephrol. 2020;31:456–68. https://doi.org/10.1681/ASN.2019020213

Gryglewski RW, Deptała A, Podolak-Dawidziak M, Dwilewicz-Trojaczek J, Walewski J, Jurczyszyn A. Erythropoietin: Discovery with Polish contribution. Pol Arch Intern Med. 2021;131:317-9. https://doi.org/10.20452/pamw.15909

Gupta N, Wish JB. Erythropoietin and its cardiovascular effects. In: Ronco C, editor. Cardio-Nephrology. Cham: Springer; 2017. p. 119-28. https://doi.org/10.1007/978-3-319-56042-7_11

Andrade L, Blanco C, Chifflet L, Cruz de Trujillo ZC, Fernandes Canziani ME, Forster TA, et al. Recomendaciones para el estudio y tratamiento de la anemia en pacientes con enfermedad renal crónica. 2018. Fecha de consulta: 17 de mayo de 2024. Disponible en: https://slanh.net/wp-content/uploads/2021/12/recomendaciones_-anemia_version_corregida_agosto_2018.pdf

Petzer V, Tymoszuk P, Asshoff M, Carvalho J, Papworth J, Deantonio C, et al. Anti-BMP6 antibody reduces erythropoietin need in rodents. Blood. 2020;136:1080-91. https://doi.org/10.1182/blood.2019004653

Kim DH, Lee YK, Kim J, Park HC, Yun KS, Cho A, et al. Effects of the route of erythropoietin administration on hemoglobin variability and cardiovascular events in hemodialysis patients. Kidney Res Clin Pract. 2021;40:724-33. https://doi.org/10.23876/j.krcp.20.260

Kamei D, Tsuchiya K, Miura H, Nitta K, Akiba T. Inter-method variability of ferritin and transferrin saturation measurement methods in patients on hemodialysis. Ther Apher Dial. 2017;21:43-51. https://doi.org/10.1111/1744-9987.12479

Dignass A, Farrag K, Stein J. Limitations of serum ferritin in inflammatory conditions. Int J Chron Dis. 2018;2018:9394060. https://doi.org/10.1155/2018/9394060

Macdougall IC, White C, Anker SD, Bhandari S, Farrington K, Kalra PA, et al. Intravenous iron in hemodialysis. N Engl J Med. 2019;380:447-58. https://doi.org/10.1056/NEJMoa1810742

Mark PB, Jhund PS, Walters MR, Petrie MC, Power A, White C, et al. Stroke in hemodialysis patients randomized to different intravenous iron strategies: A prespecified analysis from the PIVOTAL trial. Kidney360. 2021;2:1761-9. https://doi.org/10.34067/KID.0004272021

Liu L, Cheng H, Lv Y, Yu W, Liu Q, Wu Y, et al. High-dose versus low-dose iron sucrose in individuals undergoing maintenance haemodialysis: A retrospective study. BMC Nephrol. 2021;22:350. https://doi.org/10.1186/s12882-021-02570-0

Petrie MC, Jhund PS, Connolly E, Mark PB, MacDonald MR, Robertson M, et al. High-doce intravenous iron reduces myocardial infarction in patients on haemodialysis. Cardiovasc Res. 2023;119:213-20. https://doi.org/10.1093/cvr/cvab317

Singh AT, Yen TE, Mothi SS, Waikar SS, Mc Causland FR. Associations of iron sucrose and intradialytic blood pressure. Am J Kidney Dis. 2023;81:647-54. https://doi.org/10.1053/j.ajkd.2022.11.007

Barbieri C, Molina M, Ponce P, Tothova M, Cattinelli I, Titapiccolo JI, et al. An international observational study suggests that artificial intelligence for clinical decision support optimizes anemia management in hemodialysis patients. Kidney Int. 2016;90:422-9. https://doi.org/10.1016/j.kint.2016.03.036

Samal L, Kilgallon JL, Lipsitz S, Baer HJ, McCoy A, Gannon M, et al. Clinical decisión support for hypertension management in chronic kidney disease: A randomized clinical trial. JAMA Intern Med. 2024;184:484-92. https://doi.org/10.1001/jamainternmed.2023.8315

Carroll JK, Pulver G, Dickinson LM, Pace WD, Vassalotti JA, Kimminau KS, et al. Effect of 2 clinical decision support strategies on chronic kidney disease outcomes in primary care: A cluster randomized trial. JAMA Netw Open. 2018;1:e183377. https://doi.org/10.1001/jamanetworkopen.2018.3377

Grechuta K, Shokouh P, Alhussein A, Müller-Wieland D, Meyerhoff J, Gilbert J, et al. Benefits of clinical decision support systems for the management of noncommunicable chronic diseases: Targeted literature review. Interact J Med Res. 2024;13:e58036. https://doi.org/10.2196/58036

How to Cite
1.
Tenorio S, Valderrama LA, Arango-Álvarez JJ, Lozano LA, Mojica IL. Knowledge-based clinical decision support system for the automated classification of anemia in hemodialysis patients. Biomed. [Internet]. 2025 Dec. 10 [cited 2026 Jan. 12];45(Sp. 3):52-70. Available from: https://revistabiomedicaorg.biteca.online/index.php/biomedica/article/view/7945

Some similar items:

Published
2025-12-10

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
Crossref Cited-by logo
Escanea para compartir
QR Code