Calcium regulation by SERC-A before and during Alzheimer disease
Abstract
There are many factors involved in the incidence of Alzheimer’s disease that, in combination, impede or hinder normal neuronal functions. Little is currently known about calcium regulation before and during the disease. Internal instability of calcium levels is associated with increased vascular risk, a prevalent condition in a high number of individuals already compromised by Alzheimer’s disease.
This review provides a reevaluation of the molecular mechanism of the sarcoendoplasmic reticulum calcium ATPase (SERC-A) in the disease and discusses salient aspects of voltage-gated calcium channel function; in these way new alternatives could be open for its treatment. These regulation mechanisms are clinically relevant since the irregular functions of SERC+A has been implicated in pathologies of brain function.
Downloads
References
Prince M, Comas-Herrera A, Knapp M, Karagiannidou M. World Alzheimer report 2016: Improving healthcare for people living with dementia. London: Alzheimer’s Disease International; 2016.
Bermejo-Pareja F, Gómez de la CA, del Ser T, Contador I, Llamas-Velasco S, López-Arrieta JM, et al. The health status: The ignored risk factor in dementia incidences. NEDICES cohort. Aging Clin Exp Res. 2022;34:1275-83. https://doi.org/10.1007/s40520-021-02045-0
Delacourte A, Buee L. Tau pathology: A marker of neurodegenerative disorders. Curr Opin Neurol. 2000;13:371-6. https://doi.org/10.1097/00019052-200008000-00002
Bondi MW, Edmonds EC, Salmon DP. Alzheimer’s disease: Past, present, and future. J Int Neuropsy Soc. 2017;23:818-31. https://doi.org/10.1017/S135561771700100X
Cholerton B, Gleason CE, Baker LD, Asthana S. Estrogens and Alzheimer’s disease: The story so far. Drugs Aging. 2002;19:405-27. https://doi.org/ 10.2165/00002512-200219060-00002
Villarroya-Pastor MT. Alzheimer’s disease: The women´s profile. Rev Neuro. 2001;32:1178-81.
Xu Z, Dong Y, Wang H, Culley DJ, Marcantonio ER, Crosby G, et al. Age-dependent postperative cognitive impairment an Alzheimer-related neuropathology in mice. Sci Rep. 2014;4:3766. https://doi.org/10.1038/srep03766
Creese B, Ismail Z. Mild behavioral impairment: Measurement and clinical correlates of a novel marker of preclinical Alzheimer’s disease. Alzheimers Res Ther. 2022;14:2. https://doi.org/10.1186/s13195-021-00949-7
Ugbaja SC, Lawal MM, Kumalo HM. An overview of beta-amyloid cleaving enzyme (BACE1) in Alzheimer’s disease therapy: Elucidating its exosite-binding antibody and allosteric inhibitor. Curr Med Chem. 2022;29:114-35. https://doi.org/10.2174/0929867328666210608145357
Kim H, Fraser S. Neural correlates of dual-task walking in people with central neurological disorders: A systematic review. J Neurol. 2022;269:2378-402. https://doi.org/10.1007/s00415-021-10944-5
Firoz CK, Jabir NR, Khan MS, Mahmoud M, Shakil S, Damanhouri GA, et al. An overview on the correlation of neurological disorders with cardiovascular disease. Saudi J Biol Sci. 2015;22:19-23. https://doi.org/10.1016/j.sjbs.2014.09.003
Akata T. Cellular and molecular mechanism regulating vascular tone. Part 1: basic mechanisms controlling cytosolic Ca2+ concentration and the Ca2+- dependent regulation of vascular tone. J Anesth. 2007;21:220-31. https://doi.org/10.1007/s00540-006-0487-5
Brandenburg VM, Krammann R, Gottsch C, Kaesler N. Update on cardiovascular calcificacion. Nephrologe. 2017;12:168-72. https://doi.org/10.1007/s11560-017-0141-2
Severi S, Bolasco P, Badiali F, Concas G, Mancini E, Summa A, et al. Calcium profiling in hemodiafiltration: A new way to reduce the calcium overload risk without compromising cardiovascular stability. Int J Artif Organs. 2014;37:206-14. https://doi.org/10.5301/ijao.5000320
Haas JS. A new measure for the strength of electrical synapses. Front Cell Neurosci. 2015;9:378. https://doi.org/10.3389/fncel.2015.00378
Michaelis ML. Ion transport systems and Ca2+ regulation in aging neurons. Ann N Y Acad Sci. 1994;747:407-18. https://doi.org/10.1111/j.1749-6632.1994.tb44425.x
Chami M, Checler F. Alterations of the endoplasmic reticulum (ER) calcium signaling molecular components in Alzheimer’s disease. Cells. 2020;1:2577. https://doi.org/10.3390/cells9122577
Berridge MJ. Inositol trisphosphate and calcium signalling. Nature. 1993;361:315-25.
Squier TC, Bigelow DJ. Protein oxidation and age-dependent alterations in calcium homeostasis. Front Biosci. 2000;5:D504-26. https://doi.org/10.2741/squier
Mattson MP, LaFerla FM, Chan SL, Leissring MA, Shepel PN, Geiger JD. Calcium signaling in the ER: Its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 2000;23:222-9. https://doi.org/10.1016/s0166-2236(00)01548-4
Pittman JK. Vacuolar Ca2+ uptake. Cell Calcium. 2011;7:1-12. https://doi.org/10.1016/j.ceca.2011.01.004
Inesi G. Sequential mechanism of calcium binding and translocation in sarcoplasmic reticulum adenosine triphosphatase. J Biol Chem. 1987;262:16338-42. https://doi.org/10.1016/S0021-9258(18)49260-5
Hasselbach W. Relaxation and the sarcotubular calcium pump. Fed Proc. 1964;23:909-12.
MacLennan DH. Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum. J Biol Chem. 1970;245:4508-18. https://doi.org/10.1016/S0021-9258(19)63820-2
Manjarres IM, Rodríguez-García A, Alonso MT, García-Sancho J. The Sarco/endoplasmic reticulum Ca2+ ATPase (SERC-A) is the third element in capacitative calcium entry. Cell Calcium. 2010;47:412-8. https://doi.org/10.1016/j.ceca.2010.03.001
Sweadner KJ, Donnet C. Structural similarities of Na, k-ATPase and SERC-A, the Ca2+ ATPase of the sarcoplasmic reticulum. Biochem J. 2001;356:685-704. https://doi.org/10.1042/0264-6021:3560685
Wuytack F, Raeymaekers L, Missiaen L. Molecular physiology of the SERC-A and SPCA pumps. Cell Calcium. 2002;32:279-305. https://doi.org/10.1016/S0143416002001847
Periasamy M, Kalyanasundaram A. SERC-A pump isoforms: Their role in calcium transport and disease. Muscle Nerve. 2007;35:430-42. https://doi.org/10.1002/mus.2074515
Callen DF, Baker E, Lane S, Nancarrow J, Thompson A, Whitmore S, et al. Regional mapping of the Batten disease locus (CLN3) to human chromosome 16p12. Am J Hum Genet. 1991;49:1372-7.
Odermatt A, Taschner PE, Khanna VK, Busch HF, Karpati G, Jablecki CK, et al. Mutations in the gene-encoding SERC-A1, the fast twitch skeletal muscle sarcoplasmic reticulum Ca2+ ATPase, are associated with Brody disease. Nat Genet. 1996;14:191-4. https://doi.org/10.1038/ng1096-191
Salvador JM, Berengena M, Sepúlveda MR, Mata AM. Distribution of the intracellular Ca2+- ATPase isoform 2b in pig brain subcellular fractions and cross-reaction with a monoclonal antibody raised against the enzyme isoform. J Biochem. 2001;129:621-6. https://doi.org/10.1093/oxfordjournals.jbchem.a002899
Sakuntabhai A, Ruiz-Pérez V, Carter S, Jacobsen N, Burge S, Monk S, et al. Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease. Nat Genet. 1999;21:271-7. https://doi.org/10.1038/6784
Jones I, Jacobsen N, Green EK, Elvidge GP, Owen MJ, Craddock N. Evidence for familial cosegregation of major affective disorder and genetic markers flanking the gene for Darier’s disease. Mol Psychiatry. 2002;7:424-7. https://doi.org/10.1038/sj.mp.4000989
Misquitta CM, Ghosh P, Mwanjewe J, Grover AK. Role of cis-acting elements in the control of SERC-A2b Ca2+ pump mRNA decay by nuclear proteins. Biochem J. 2005;388:291-7. https://doi.org/10.1042/BJ20041568
Li SH, Zhao F, Tang QL, Xi CC, He J, Wang YJ, et al. Sarco/endoplasmic reticulum Ca2+-ATPase (SERC-A2b) mediates oxidation-induced endoplasmic reticulum stress to regulate neuropathic pain. Br J Pharmacol. 2022;179:2016-36. https://doi.org/10.1111/bph.15744
Gallego-Sandín S, Alonso MT, García-Sancho J. Calcium homeostasis modulator 1 (CALhM1) reduces the calcium content of the endoplasmic reticulum (ER) and triggers ER stress. Biochem J. 2011;437:469-75. https://doi.org/10.1042/BJ20110479
Taipa R, Pinho J, Melo-Pires M. Clinico-pathological correlations of the most common neurodegenerative dementias. Front Neurol. 2012;3:1-13. https://doi.org/10.3389/fneur.2012.00068
West MJ, Coleman PD, Flood DG, Troncoso JC. Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer´s disease. Lancet. 1994;344:769-72. https://doi.org/10.1016/S0140-6736(94)92338-8
Dahl R. A new target for Parkinson´s disease: Samll molecule SERCA activator CDN1163 ameliorates dyskinesia in 6-OHDA-lesioned rats. Bioorg Med Chem. 2017;25:53-7. https://doi.org/10.1016/j.bmc.2016.10.008
Krajnak K, Dahl R. A new target for Alzheimer’s disease: A small molecule SERC-A activator is neuroprotective in vitro and improves memory and cognition in APP/PS1 mice. Bioorg Med Chem Lett. 2018;28:1591-4. https://doi.org/10.1016/j.bmcl.2018.03.052
López OL. The growing burden of Alzheimer’s disease. Am J Manag Care. 2011;17(Suppl.13):S339-45.
Park SW, Zhou Y, Lee J, Ozcan U. Sarco(endo)plasmic reticulim Ca2+-ATPase 2b is a major regulator of endoplasmic reticulum stress and glucose homeostasis in obesity. Proc Natl Acad Sci USA. 2010;107:19320-5. https://doi.org/10.1073/pnas.1012044107
Lin JH, Walter P, Yen TSB. Endoplasmic reticulum stress in disease pathogenesis. Ann Rev Pathol. 2008;3:399-425. https://doi.org/10.1146/annurev.pathmechdis.3.121806.151434
Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8:519-29. https://doi.org/10.1038/nrm2199
Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: Disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 2008;7:1013-30. https://doi.org/10.1038/nrd2755
Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature. 2008;454:455-62. https://doi.org/10.1038/nature07203
Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci USA. 1990;87:2466-70. https://doi.org/10.1073/pnas.87.7.2466
Aulestia FJ, Redondo PC, Rodríguez-García A, Rosado JA, Salido GM, Alonso MT, et al. Two distinct calcium pools in the endoplasmic reticulum of HEK-293T cells. Biochem J. 2011;435:227-35. https://doi.org/10.1042/BJ20101427
Sordi G, Goti A, Young HS, Palchetti I, Tadini-Buninsegni F. Stimulation of Ca2+-ATPase transport activity by a small-molecule drug. Chem Med Chem. 2021;16:3293-99. https://doi.org/10.1002/cmdc.202100350
Zhang W, Ye F, Pang N, Kessi M, Xiong J, Chen S, et al. Restoration of Sarco/endoplasmic reticulum Ca2+-ATPase activity functions as a pivotal therapeutic target of anti-glutamateinduced excitotoxicity to attenuate endoplasmic reticulum Ca2+ depletion. Front Pharmacol. 2022;13:877175. https://doi.org/10.3389/fphar.2022.877175
Some similar items:
- Juan Camilo Calderón-Vélez, Lourdes Carolina Figueroa-Gordon, Excitation-contraction coupling in skeletal muscle: questions remaining after 50 years of research , Biomedica: Vol. 29 No. 1 (2009)
- Nora Elena Múnera, Rosa Magdalena Uscátegui, Beatriz Elena Parra, Luz Mariela Manjarrés, Fredy Patiño, Claudia María Velásquez, Alejandro Estrada, Gabriel Bedoya, Vicky Parra, Angélica María Muñoz, Ana Carolina Orozco, Gloria María Agudelo, Environmental risk factors and metabolic syndrome components in overweight youngsters , Biomedica: Vol. 32 No. 1 (2012)
- Myriam L. Velandia, Zayra V. Garavito, María L. Caldas, Hernán Hurtado, Calcium ATPase in the nervous system , Biomedica: Vol. 21 No. 1 (2001)
- Luis Orlando Pérez, Anahí Ruderman , Mariana Useglio , Virginia Ramallo , Carolina Paschetta, Soledad de Azevedo , Pablo Navarro , Leonardo Morales , Magda Alexandra Trujillo-Jiménez , Bruno Pazos , Tamara Teodoroff, Rolando González-José , Relationship between moderate alcohol consumption, genetic polymorphisms and body weight in a population sample of Puerto Madryn, Argentina , Biomedica: Vol. 44 No. 4 (2024)

Copyright (c) 2023 Biomedica

This work is licensed under a Creative Commons Attribution 4.0 International License.
Article metrics | |
---|---|
Abstract views | |
Galley vies | |
PDF Views | |
HTML views | |
Other views |