Detection of Treponema pallidum subspecies pallidum for the diagnosis of congenital syphilis by nested polymerase chain reaction
Abstract
Introduction. Syphilis is a disease produced by Treponema pallidum subspecies pallidum, which affects approximately 12 million people worldwide every year. Of these, more than 2 million are pregnant women whose babies end up having congenital syphilis, the worst form of this infection.
Objective. To detect the presence of T. pallidum subspecies pallidum in clinical samples in order to diagnose congenital syphilis by means of nested PCR, and to determine its concordance with serological testing.
Materials and methods. Three target genes (polA, 16S ADNr y TpN47) were amplified by conventional and nested PCR. The results from the amplification of the TpN47 and polA genes were confirmed by sequencing. The serological tests used were VDRL (Venereal Disease Research Laboratory), RPR (Rapid Plasma Reagin) y TPPA (Treponema pallidum Particle Agglutination Assay).
Results. The sensitivity for the conventional PCR was 52 pg and 0.52 pg for the nested PCR. The specificity of primers TpN47 and polA was 100 %; the results of the sequencing showed a 97 % identity with T. pallidum. There was concordance between the serology and the nested PCR in 70% of the samples.
Conclusion. The TpN47 gene was the best molecular target for the identification of T. pallidum. The nested PCR is a promising molecular tool for the diagnosis of congenital syphilis.
Downloads
References
Grange P, Gressier L, Dion P, Farhi D, Benhaddou N, Gerhardt P, et al. Evaluation of a PCR test for detection of Treponema pallidum in swabs and blood. J Clin Microbiol. 2012;50:546-52. https://doi.org/10.1128/JCM.00702-11
Casal D, Silva O, Costa I, Araújo C, Corvelo C. Molecular detection of Treponema pallidum sp. pallidum in blood samples of VDRL-seroreactive women with lethal pregnancy outcomes: A retrospective observational study in northern Brazil. Rev Soc Bras Med Trop. 2011;44:451-6. https://doi.org/10.1590/S0037-86822011005000047
Buffet M, Grange P, Gerhardt P, Carlotti A, Calvez V, Bianchi A, et al. Diagnosing Treponema pallidum in secondary syphilis by PCR and immunohistochemistry. J Invest Dermatol. 2007;127:2345-50. https://doi.org/10.1038/sj.jid.5700888
De la Hoz F, Martínez M, Pacheco O, Quijada H, Beltrán M, Ramírez C. Protocolo de vigilancia en salud pública. Sífilis gestacional y sífilis congénita. Bogotá: Instituto Nacional de Salud; 2015. p. 2-3.
Valderrama J, Zacarías F, Mazin R. Sífilis materna y sífilis congénita en América Latina: un problema grave de solución sencilla. Rev Panam Salud Pública. 2004;16:211-7. https://doi.org/10.1590/S1020-49892004000900012
Casas-P RL, Rodríguez M, Rivas J. Sífilis y embarazo: ¿cómo diagnosticar y tratar oportunamente? Rev Colomb Obstet Ginecol. 2009;60:49-56.
Organización Panamericana de la Salud. Guía clínica para la eliminación de la transmisión materno-infantil del VIH y de la sífilis congénita en América Latina y el Caribe. Washington, D.C.: OPS; 2009.
Díaz LA. Sífilis gestacional: un problema de salud pública. Rev Fac Med. 2011;59:163-5.
Cruz AR. Situación de la sífilis gestacional y congénita en Colombia, un desafío al Sistema General de Seguridad Social en Salud. Rev Colomb Obstet Ginecol. 2012;63:308-11.
Cifuentes M, Ojeda C. Sífilis congénita en el Instituto Materno Infantil-Hospital La Victoria, Bogotá. Rev Salud Pública. 2013;15:434-45.
Herring A, Ballard R, Mabey D, Peeling R. Evaluation of rapid diagnostic tests: Syphilis. Nat Rev Microbiol. 2006;4 (Suppl.):S33-40. https://doi.org/10.1038/nrmicro1563
Luu M, Ham C, Kamb M, Caffe S, Hoover K, Pérez F. Syphilis testing in antenatal care: Policies and practices among laboratories in the Americas. Int J Gynecol Obstet. 2015;130(Suppl.1):S37-42. https://doi.org/10.1016/j.ijgo.2015.04.011
Martin I, Weiming G, Tsang R. Macrolide resistance and molecular types of Treponema pallidum causing primary syphilis in Shanghai, China. Clin Infect Dis. 2009;49:515-21. https://doi.org/10.1086/600878
Ham D, Lin C, Newman L, Wijesooriya N, Kamb M. Improving global estimates of syphilis in pregnancy by diagnostic test type: A systematic review and meta-analysis. Int J Gynecol Obstet. 2015;130(Suppl.1):S10-4. https://doi.org/10.1016/j.ijgo.2015.04.012
Singh A, Levett P, Fonseca K, Jayaraman G, Lee B. Canadian Public Health Laboratory Network laboratory guidelines for congenital syphilis and syphilis screening in pregnant women in Canada. Canad J Infect Dis Med Microbiol. 2015;26(Suppl.A):23A-8. https://doi.org/10.1155/2015/589085
Martin I, Tsang R, Sutherland K, Tilley P, Read R, Anderson B, et al. Molecular characterization of syphilis in patients in Canada: Azithromycin resistance and detection of Treponema pallidum DNA in whole-blood samples versus ulcerative swabs. J Clin Microbiol. 2009;47:1668-73. https://doi.org/10.1128/JCM.02392-08
Heymans R, Helm J, Vries C, Fennema A, Coutinho A, Bruisten M. Clinical value of Treponema pallidum real-time PCR for diagnosis of syphilis. J Clin Microbiol. 2010;48:497-502. https://doi.org/10.1128/JCM.00720-09
Sampedro A, Martínez LA, Teatino PM, Rodríguez-Granger J. Diagnosis of congenital infection. Enferm Infecc Microbiol Clin. 2011;29:15-20. https://doi.org/10.1016/S0213-005X(11)70039-8
Cejková D, Zobaníková M, Chen L, Pospíšilová P, Strouhal M, Qin X, et al. Whole genome sequences of three Treponema pallidum ssp. pertenue strains: Yaws and syphilis treponemes differ in less than 0.2% of the genome sequence. PLoS Negl Trop Dis. 2012;6:e1471. https://doi.org/10.1371/journal.pntd.0001471
Promega. Technical Manual, Wizard Genomic DNA Purification Kit®. Fecha de consulta: 5 de septiembre de 2016. Disponible en: https://www.promega.com/~/media/files/resources/protocols/technical%20manuals/0/wizard%20genomic%20dna%20purification%20kit%20protocol.pdf
Pinilla G, Chavarro B, Moreno N, Navarrete J, Muñoz L. Determinación de los genes, 16S ADNr, polA y TpN47, en la detección de Treponema pallidum subsp. pallidum para el diagnóstico de sífilis congénita. NOVA. 2015;13:17-25.
QIAGEN. QIAamp DNA Mini Kit® and QIAamp DNA Blood Mini Kit® Handbook 2013. Fecha de consulta: 15 de marzo de 2015. Disponible en: http://emerald.tufts.edu/~mcourt01/Documents/QIAGEN_protocol.pdf
Macrogen. Normal Automatic Sequencing. Fecha de consulta: 10 de octubre de 2015. Disponible en: http://www.macrogen.com/download/Standard_Seq_Brochure.pdf
Thermo Fisher. VDRL Test Kit®. Fecha de consulta: 2 de febrero de 2015. Disponible en: http://tools.thermofisher.com/content/sfs/manuals/X4988B-ES.pdf
BioKit. Rapid test for the qualitative and quantitative detection of syphilis in serum or plasma. Fecha de consulta: 2 de febrero de 2015. Disponible en: http://docplayer.es/35836985-Rpr-reditest-rapid-test-for-the-qualitative-andquantitative-detection-of-syphilis-in-serum-or-plasma.html
Fujirebio T. Serodia-TPPA. Fecha de consulta: 22 de marzo de 2015. Disponible en: http://www.fdi.com/documents/products/inserts/PROOF%20POLLOCK%20Serodia_TP_PA_Sheet%20020912.pdf
Chowdhary N, Rani K, Mukunda K, Kiran K. Early detection of congenital syphilis. J Indian Soc Pedod Prev Dent. 2014;32:333-7. https://doi.org/10.4103/0970-4388.140969
Ramos JM, León R, Andreu M, de las Parras ER, Rodríguez-Díaz JC, Esteban Á, et al. Serological study of Trypanosoma cruzi, Strongyloides stercoralis, HIV, human T cell lymphotropic virus (HTLV) and syphilis infections in asymptomatic Latin American immigrants in Spain. Trans R Soc Trop Med Hyg. 2015;109:447-53. https://doi.org/10.1093/trstmh/trv043
Gayet-Ageron A, Combescure C, Lautenschlager S, Ninet B, Perneger TV. Comparison of diagnostic accuracy of PCR targeting the 47-kilodalton protein membrane gene of Treponema pallidum and PCR targeting the DNA polymerase I gene: Systematic review and meta-analysis. J Clin Microbiol. 2015;53:3522-9. https://doi.org/10.1128/JCM.01619-15
Noda A, Blanco O, Correa C, Pérez L, Kourí V, Rodríguez I. Etiology of genital ulcer disease in male patients attending a sexually transmitted diseases clinic: First assessment in Cuba. Sex Transm Dis. 2016;43:494-7. https://doi.org/10.1097/OLQ.0000000000000470
Castro R, Águas MJ, Batista T, Araújo C, Mansinho K, Pereira F da L. Detection of Treponema pallidum sp. pallidum DNA in cerebrospinal fluid (CSF) by two PCR techniques. J Clin Lab Anal. 2016;30:628-32. https://doi.org/10.1002/jcla.21913
Liu H, Rodes B, Chen C-Y, Steiner B. New tests for syphilis: Rational design of a PCR method for detection of Treponema pallidum in clinical specimens using unique regions of the DNA polymerase I gene. J Clin Microbiol. 2001;39:1941-6. https://doi.org/10.1128/JCM.39.5.1941-1946.2001
Pope V, Fox K, Liu H, Marfin A, Leone P, Seña C, et al. Molecular subtyping of Treponema pallidum from North and South Carolina. J Clin Microbiol. 2005;43:3743-6. https://doi.org/10.1128/JCM.43.8.3743-3746.2005
Castro R, Prieto E, Aguas M, Manata M, Botas J, Martins P. Molecular subtyping of Treponema pallidum subsp. pallidum in Lisbon, Portugal. J Clin Microbiol. 2009;47:2510-2. https://doi.org/10.1128/JCM.00287-08
Větrovský T, Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One. 2013;8:e57923.
Grillová L, Pĕtrošová H, Mikalová L, Strnadel R, Dastychová E, Kuklová I, et al. Molecular typing of Treponema pallidum in the Czech Republic during 2011 to 2013: Increased prevalence of identified genotypes and of isolates with macrolide resistance. J Clin Microbiol. 2014;52:3693-700. https://doi.org/10.1128/JCM.01292-14
Leslie E, Azzato F, Karapanagiotidis T, Leydon J, Fyfe J. Development of a real-time PCR assay to detect Treponema pallidum in clinical specimens and assessment of the assay’s performance by comparison with serological testing. J Clin Microbiol. 2007;45:93-6. https://doi.org/10.1128/JCM.01578-06
Bruisten M, Cairo I, Fennema H, Pijl A, Buimer M, Peerbooms G, et al. Diagnosing genital ulcer disease in a clinic for sexually transmitted diseases in Amsterdam, The Netherlands. J Clin Microbiol. 2001;39:601-5. https://doi.org/10.1128/JCM.39.2.601-605.2001
Mendoza N, Jaramillo C, Guhl F, Padilla J, Rentería M. Diagnóstico de malaria por el método de la PCR anidada. Biomédica. 2001;21:320-7. https://doi.org/10.7705/biomedica.v21i4.1124
Some similar items:
- Cristian Vallejo, Yolanda Cifuentes, Characterization and six-month follow-up on a cohort of newborns with congenital syphilis , Biomedica: Vol. 36 No. 1 (2016)
- Yolanda Cifuentes, Martha Isabel Murcia, Jorge Piar, Patricia Pardo, Cerebral microcalcifications in a newborn with congenital tuberculosis , Biomedica: Vol. 36 No. 1 (2016)
- Richard C. Pacheco, Mauricio C. Horta, Jonas Moraes-Filho, Alexandre C. Ataliba, Adriano Pinter, Marcelo B. Labruna, Rickettsial infection in capybaras (Hydrochoerus hydrochaeris from São Paulo, Brazil: serological evidence for infection by Rickettsia bellii and Rickettsia parkeri , Biomedica: Vol. 27 No. 3 (2007)
- Rubén Santiago Nicholls, Zulma Milena Cucunubá, Angélica Knudson, Astrid Carolina Flórez, Marleny Montilla, Concepción Judith Puerta, Paula Ximena Pavía, Acute Chagas disease in Colombia: a rarely suspected disease. Report of 10 cases presented during the 2002-2005 period , Biomedica: Vol. 27 No. 1esp (2007): Enfermedad de Chagas
- Richard Hoyos, Lisandro Pacheco, Luz Adriana Agudelo, German Zafra, Pedro Blanco, Omar Triana, Seroprevalence of Chagas disease and associated risk factors in a population of Morroa, Sucre , Biomedica: Vol. 27 No. 1esp (2007): Enfermedad de Chagas
- Henry Ostos, Gilberto Astaiza, Francisco Garcia, Miller Bautista, Favio Rojas, Low incidence of congenital neural tube defects at the Neiva University Hospital: possible effect of folic acid supplementation , Biomedica: Vol. 20 No. 1 (2000)
- Piedad Agudelo Flórez, Marcos Restrepo, María Amparo Lotero, Evaluation of indirect immunofluorescence assay for diagnosis of human leptospirosis. , Biomedica: Vol. 26 No. 2 (2006)
- Harry Pachajoa, Vania A. Villota, Luz Marina Cruz, Yoseth Ariza, Prevalence of birth defects according to the level of care in two hospitals, Cali, Colombia, 2012-2013 , Biomedica: Vol. 35 No. 2 (2015)
- Liliana María Zuluaga, John Camilo Hernández, Carlos Felipe Castaño, Jorge Hernando Donado, Effect of antenatal spiramycin treatment on the frequency of retinochoroiditis due to congenital toxoplasmosis in a Colombian cohort , Biomedica: Vol. 37 No. Sup.1 (2017): Suplemento 1, Alteraciones del sistema nervioso
- María Luz Gunturiz, Liliana Cortés, Ester Liliana Cuevas, Pablo Chaparro, Martha Lucía Ospina, Congenital cerebral toxoplasmosis, Zika and chikungunya virus infections: a case report , Biomedica: Vol. 38 No. 2 (2018)

Article metrics | |
---|---|
Abstract views | |
Galley vies | |
PDF Views | |
HTML views | |
Other views |