Analysis of the primary and secondary structure of the mitochondrial serine transfer RNA in seven species of Lutzomyia
Keywords:
Psychodidae/classification, RNA transfer/genetics, mitochondria, DNA, leishmaniasis
Abstract
Introduction. Lutzomyia sand flies are involved in the transmission of the parasite Leishmania spp. in America. The taxonomy of these vectors is traditionally based on morphological features of the adult stage, particularly the paired structures of the head and genitalia. Although these characters are useful to distinguish most species of Lutzomyia, morphological identification may be complicated by the similarities within subgenera and species group.Objective. To evaluate the utility of mitochondrial serine transfer RNA tRNASer for taxonomic identification of Lutzomyia.
Materials and methods. Seven sand fly species, each representing one of the 27 taxonomic subdivisions in genus Lutzomyia, were analyzed including L. trinidadensis (Oswaldoi group), L. (Psychodopygus) panamensis, L.(Micropygomyia) cayennensis cayennensis, L. dubitans (Migonei group), L. (Lutzomyia) gomezi, L. rangeliana (ungrouped) and L. evansi (Verrucarum group). The mitochondrial tRNASer gene, flanked by the cytochrome b and NAD dehydrogenase subunit one genes, was extracted, amplified and sequenced from each specimen. Secondary structure of the tRNASer was predicted by comparisons with previously described homologous structures from other dipteran species.
Results. The tRNASer gene ranged in size from 66 base pairs in L. gomezi to 69 base pairs in L.
trinidadensis. Fourteen polymorphic sites, including four insertion-deletion events, were observed in the aligned 70 nucleotide positions. The majority of the substitutions were located in the dihydrouridine, ribothymidine-pseudouridine-cytosine and variable loops, as well as in the basal extreme of the anticodon arm.
Conclusion. Changes of primary sequence of the tRNASer provided useful molecular characters for taxonomic identification of the sand fly species under consideration.
Downloads
Download data is not yet available.
References
1. Montoya-Lerma J, Ferro C. Flebótomos (Diptera: Psychodidae) de Colombia. En: Amat G, Andrade MG, Fernández F, editores. Insectos de Colombia. Volúmen II. Colección Jorge Álvarez Lleras, No. 13. Academia Colombiana de Ciencias Exactas, Físicas y Naturales. Bogotá D. C.: Centro Editorial Javeriano; 1999. p.211-45.
2. Sherlock IA. Importância dos flebotomíneos. En: Rangel EF, Lainson R, editores. Flebotomíneos do Brasil. Rio do Janeiro: Editora Fiocruz; 2003. p.15-21.
3. Brazil RP, Brazil BG. Biología de flebotomíneos neotropicais. En: Rangel EF, Lainson R, editores. Flebotomíneos do Brasil. Rio do Janeiro: Editora Fiocruz; 2003. p.257-74.
4. Young DG, Duncan MA. Guide to the identification and geographic distribution of Lutzomyia sand flies in Mexico, the West Indies, Central and South America (Diptera: Psychodidae). Mem Amer Ent Inst. 1994;54:1-881.
5. Galati EA. Morfologia, terminologia de adultos e identificação dos táxons da América. En: Rangel EF, Lainson R, editores. Flebotomíneos do Brasil. Rio do Janeiro: Editora Fiocruz; 2003. p.53-175.
6. Bejarano EE. Sobre la evolución de los flebotomíneos americanos (Diptera: Psychodidae): un llamado a los sistemáticos moleculares. Rev Colomb Entomol. 2002;28:211-2.
7. Bejarano EE. Nuevas herramientas para la clasificación taxonómica de los insectos vectores de leishmaniosis: utilidad de los genes mitocondriales. Biomédica. 2001;21:182-91.
8. Avise JC. Molecular markers, natural history and evolution.1st ed. New York: Chapman & Hall Inc; 1994. p.1-511.
9. Young DG, Perkins PV. Phlebotomine sand flies of North America (Diptera: Psychodidae). Mosq News. 1984;44:263-304.
10. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am. 1994;87:651-701.
11. Ready PD, Day JC, De Souza AA, Rangel EF, Davies CR. Mitochondrial DNA characterization of populations of Lutzomyia whitmani (Diptera: Psychodidae) incriminated in the peri-domestic and silvatic transmission of Leishmania species in Brazil. Bull Entom Res. 1997;87:187-95.
12. Bejarano EE. Variabilidad genética y especiación en Lutzomyia (verrucarum) evansi (Núñez-Tovar, 1924), vector de leishmaniosis visceral americana [Tesis]. Medellín: Universidad de Antioquia; 2001.
13. Soto SI, Lehmann T, Rowton ED, Vélez ID, Porter CH. Speciation and population structure in the morphospecies Lutzomyia longipalpis (Lutz & Neiva) as derived from the mitochondrial ND4 gene. Mol
Phylogenet Evol. 2001;18:84-93.
14. Rojas W. Relaciones filogenéticas en Lutzomyia spp. del grupo verrucarum (tesis). Medellín: Universidad de Antioquia; 2001.
15. Arrivillaga JC, Norris DE, Feliciangeli MD, Lanzaro GC. Phylogeography of the neotropical sand fly Lutzomyia longipalpis inferred from mitochondrial DNA sequences. Infect Genet Evol. 2002;2:83-95.
16. Testa JM, Montoya-Lerma J, Cadena H, Oviedo M, Ready PD. Molecular identification of vectors of Leishmania in Colombia: Mitochondrial introgression in the Lutzomyia townsendi series. Acta Trop. 2002;84:205-18.
17. Beati L, Caceres AG, Lee JA, Munstermann LE. Systematic relationships among Lutzomyia sand flies (Diptera: Psychodidae) of Perú and Colombia based on the analysis of 12S and 28S ribosomal DNA sequences. Int J Parasitol. 2004;34:225-34.
18. Rich A, Schimmel PR. Structural organization of complexes of transfer RNAs with aminoacyl transfer RNA synthetases. Nucleic Acids Res. 1977; 4:1649-65.
19. Masta SE. Mitochondrial sequence evolution in spiders: intraspecific variation in tRNAs lacking the TCC arm. Mol Biol Evol. 2000;17:1091-100.
20. Chandra BC, Jennifer L, Kapatral V. Comparative insect mitochondrial genomes: Differences despite conserved genome synteny Sathees. Afr J Biotechnol. 2006,5:1308-18.
21. Lodish H, Baltimore D, Berk A, Lawrence S, Matsudaira P, Darnell J. Molecular cell biology. 3rd ed. New York: Scientific American Books Inc; 1995. p.1-1344.
22. Collins FH, Mendez MA, Rasmussen MO, Mehaffey PC, Besansky NJ, Finnerty V. A ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex. Am J Trop Med Hyg. 1987;37:37-41.
23. Kumar S, Tamura K, Nei M. MEGA 3.1: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 2004;5:150-63.
24. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position- specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673-80.
25. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403-10.
26. Klingler TM, Brutlag DL. Detection of correlations in tRNA sequences with structural implications. Proc Int Conf Intell Syst Mol Biol. 1993;1:225-33.
27. Beard CB, Hamm DM, Collins FH. The mitochondrial genome of the mosquito Anopheles gambiae: DNA sequence, genome organization, and comparisons with mitochondrial sequences of other insects. Insect Mol Biol. 1993;2:103-24.
28. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955-64.
29. Esseghir S, Ready PD, Killick-Kendrick R, Ben-Ismail R. Mitochondrial haplotypes and phylogeography of Phlebotomus vectors of Leishmania major. Insect Mol Biol. 1997;6:211-25.
30. Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature. 1981;290:470-4.
31. Theodor O. On the classification of American Phlebotominae. J Med Entomol. 1965;2:171-97.
2. Sherlock IA. Importância dos flebotomíneos. En: Rangel EF, Lainson R, editores. Flebotomíneos do Brasil. Rio do Janeiro: Editora Fiocruz; 2003. p.15-21.
3. Brazil RP, Brazil BG. Biología de flebotomíneos neotropicais. En: Rangel EF, Lainson R, editores. Flebotomíneos do Brasil. Rio do Janeiro: Editora Fiocruz; 2003. p.257-74.
4. Young DG, Duncan MA. Guide to the identification and geographic distribution of Lutzomyia sand flies in Mexico, the West Indies, Central and South America (Diptera: Psychodidae). Mem Amer Ent Inst. 1994;54:1-881.
5. Galati EA. Morfologia, terminologia de adultos e identificação dos táxons da América. En: Rangel EF, Lainson R, editores. Flebotomíneos do Brasil. Rio do Janeiro: Editora Fiocruz; 2003. p.53-175.
6. Bejarano EE. Sobre la evolución de los flebotomíneos americanos (Diptera: Psychodidae): un llamado a los sistemáticos moleculares. Rev Colomb Entomol. 2002;28:211-2.
7. Bejarano EE. Nuevas herramientas para la clasificación taxonómica de los insectos vectores de leishmaniosis: utilidad de los genes mitocondriales. Biomédica. 2001;21:182-91.
8. Avise JC. Molecular markers, natural history and evolution.1st ed. New York: Chapman & Hall Inc; 1994. p.1-511.
9. Young DG, Perkins PV. Phlebotomine sand flies of North America (Diptera: Psychodidae). Mosq News. 1984;44:263-304.
10. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am. 1994;87:651-701.
11. Ready PD, Day JC, De Souza AA, Rangel EF, Davies CR. Mitochondrial DNA characterization of populations of Lutzomyia whitmani (Diptera: Psychodidae) incriminated in the peri-domestic and silvatic transmission of Leishmania species in Brazil. Bull Entom Res. 1997;87:187-95.
12. Bejarano EE. Variabilidad genética y especiación en Lutzomyia (verrucarum) evansi (Núñez-Tovar, 1924), vector de leishmaniosis visceral americana [Tesis]. Medellín: Universidad de Antioquia; 2001.
13. Soto SI, Lehmann T, Rowton ED, Vélez ID, Porter CH. Speciation and population structure in the morphospecies Lutzomyia longipalpis (Lutz & Neiva) as derived from the mitochondrial ND4 gene. Mol
Phylogenet Evol. 2001;18:84-93.
14. Rojas W. Relaciones filogenéticas en Lutzomyia spp. del grupo verrucarum (tesis). Medellín: Universidad de Antioquia; 2001.
15. Arrivillaga JC, Norris DE, Feliciangeli MD, Lanzaro GC. Phylogeography of the neotropical sand fly Lutzomyia longipalpis inferred from mitochondrial DNA sequences. Infect Genet Evol. 2002;2:83-95.
16. Testa JM, Montoya-Lerma J, Cadena H, Oviedo M, Ready PD. Molecular identification of vectors of Leishmania in Colombia: Mitochondrial introgression in the Lutzomyia townsendi series. Acta Trop. 2002;84:205-18.
17. Beati L, Caceres AG, Lee JA, Munstermann LE. Systematic relationships among Lutzomyia sand flies (Diptera: Psychodidae) of Perú and Colombia based on the analysis of 12S and 28S ribosomal DNA sequences. Int J Parasitol. 2004;34:225-34.
18. Rich A, Schimmel PR. Structural organization of complexes of transfer RNAs with aminoacyl transfer RNA synthetases. Nucleic Acids Res. 1977; 4:1649-65.
19. Masta SE. Mitochondrial sequence evolution in spiders: intraspecific variation in tRNAs lacking the TCC arm. Mol Biol Evol. 2000;17:1091-100.
20. Chandra BC, Jennifer L, Kapatral V. Comparative insect mitochondrial genomes: Differences despite conserved genome synteny Sathees. Afr J Biotechnol. 2006,5:1308-18.
21. Lodish H, Baltimore D, Berk A, Lawrence S, Matsudaira P, Darnell J. Molecular cell biology. 3rd ed. New York: Scientific American Books Inc; 1995. p.1-1344.
22. Collins FH, Mendez MA, Rasmussen MO, Mehaffey PC, Besansky NJ, Finnerty V. A ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex. Am J Trop Med Hyg. 1987;37:37-41.
23. Kumar S, Tamura K, Nei M. MEGA 3.1: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 2004;5:150-63.
24. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position- specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673-80.
25. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403-10.
26. Klingler TM, Brutlag DL. Detection of correlations in tRNA sequences with structural implications. Proc Int Conf Intell Syst Mol Biol. 1993;1:225-33.
27. Beard CB, Hamm DM, Collins FH. The mitochondrial genome of the mosquito Anopheles gambiae: DNA sequence, genome organization, and comparisons with mitochondrial sequences of other insects. Insect Mol Biol. 1993;2:103-24.
28. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955-64.
29. Esseghir S, Ready PD, Killick-Kendrick R, Ben-Ismail R. Mitochondrial haplotypes and phylogeography of Phlebotomus vectors of Leishmania major. Insect Mol Biol. 1997;6:211-25.
30. Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature. 1981;290:470-4.
31. Theodor O. On the classification of American Phlebotominae. J Med Entomol. 1965;2:171-97.
How to Cite
1.
Vivero RJ, Contreras-Gutiérrez MA, Bejarano EE. Analysis of the primary and secondary structure of the mitochondrial serine transfer RNA in seven species of Lutzomyia. Biomed. [Internet]. 2007 Sep. 1 [cited 2025 Apr. 4];27(3):429-38. Available from: https://revistabiomedicaorg.biteca.online/index.php/biomedica/article/view/205
Some similar items:
- Eduar Elías Bejarano, Rafael José Vivero, Sandra Uribe, First record of the sand fly Warileya (Hertigia) hertigi from Antioquia, Colombia , Biomedica: Vol. 38 No. 2 (2018)
- José Gabriel Vergara, Daniel Verbel-Vergara, Ana Milena Montesino, Alveiro Pérez-Doria, Eduar Elías Bejarano, Estimation of time detection limit for human cytochrome b in females of Lutzomyia evansi , Biomedica: Vol. 37 No. Sup. 2 (2017): Suplemento 2, Entomología médica, 2017
- María Angélica Contreras-Gutiérrez, Iván Darío Vélez, Charles Porter, Sandra Inés Uribe, An updated checklist of Phlebotomine sand flies (Diptera: Psychodidae: Phlebotominae) from the Colombian Andean coffee-growing region , Biomedica: Vol. 34 No. 3 (2014)
- Elsa Nieves, Néstor Villarreal, Maritza Rondón, Mireya Sánchez, José Carrero, Evaluation of knowledge and practice on tegumentary leishmaniasis in an endemic area of Venezuela , Biomedica: Vol. 28 No. 3 (2008)
- Luis Alberto Cortés, Jhon James Fernández, Species of Lutzomyia involved in an urban focus of visceral and cutaneous leishmaniasis , Biomedica: Vol. 28 No. 3 (2008)
- Elsa Nieves, Neudo Buelvas, Maritza Rondón, Néstor González, The salivary glands of two sand fly vectors of Leishmania: Lutzomyia migonei (França) and Lutzomyia ovallesi (Ortiz) (Diptera: Psychodidae) , Biomedica: Vol. 30 No. 3 (2010)
- Carlos Pérez, Yoanet Solías, Gerzaín Rodríguez, Diffuse cutaneous leishmaniasis in a patient with AIDS , Biomedica: Vol. 26 No. 4 (2006)
- María Angélica Contreras, Rafael José Vivero, Eduar Elías Bejarano, Lina María Carrillo, Iván Darío Vélez, New records of phlebotomine sand flies (Diptera: Psychodidae) near the Amoya River in Chaparral, Tolima , Biomedica: Vol. 32 No. 2 (2012)
- Luz Adriana Acosta, Karina Mondragon-Shem, Daniela Vergara, Andrés Velez-Mira, Horacio Cadena, Lina Maria Carrillo, Expansion of the distribution of Lutzomyia longipalpis (Lutz & Neiva, 1912) (Diptera: Psychodidae) in the department of Caldas: increased risk of visceral leishmaniasis , Biomedica: Vol. 33 No. 2 (2013)
- Sergio Méndez-Cardona, María Cristina Carrasquilla , Camila González , Erika Santamaría , Chaetotaxy of the fourth larval stage of Pintomyia longiflocosa, a primary vector of cutaneous leishmaniasis in Colombia , Biomedica: Vol. 44 No. 4 (2024)
Issue
Section
Original articles
Article metrics | |
---|---|
Abstract views | |
Galley vies | |
PDF Views | |
HTML views | |
Other views |