Prevalencia de la resistencia a macrólidos y aminoglucósidos en los complejos Mycobacterium avium y M. abscessus y en Mycobacterium chelonae identificados en el Laboratorio Nacional de Referencia de Colombia entre el 2018 y el 2022
Resumen
Introducción. Mycobacterium chelonae y los complejos Mycobacterium avium y M. abscessus, son agentes patógenos emergentes causantes de micobacteriosis. El tratamiento de esta infección depende de la especie y la subespecie identificadas. Los fármacos de elección son los macrólidos y aminoglucósidos, contra los cuales se ha reportado resistencia; por esta razón, el determinar el perfil de sensibilidad le permite al médico tratante comprender mejor el pronóstico y la evolución de estas infecciones.
Objetivo. Describir los perfiles de sensibilidad ante macrólidos y aminoglucósidos, de los cultivos identificados como complejo Mycobacterium avium, complejo M. abscessus o especie M. chelonae, en el Laboratorio Nacional de Referencia de Micobacterias durante los años 2018 a 2022.
Materiales y métodos. Se llevó a cabo un estudio descriptivo del perfil de sensibilidad a macrólidos y aminoglucósidos, de los cultivos identificados como complejo M. avium, complejo M. abscessus o M. chelonae, mediante la metodología GenoType® NTM-DR.
Resultados. Los cultivos del complejo M. avium fueron 159 (47,3 %), de los cuales, 154 (96,9 %) fueron sensibles y 5 (3,1 %) resistentes a los macrólidos; todos fueron sensibles a los aminoglucósidos. Del complejo M. abscessus se estudiaron 125 (37,2 %) cultivos, 68 (54,4 %) resultaron sensibles y 57 (45,6 %) resistentes a los macrólidos; solo un cultivo (0,8 %) fue resistente a los aminoglucósidos. De M. chelonae se analizaron 52 cultivos (15,5 %), todos sensibles a los macrólidos y aminoglucósidos.
Conclusiones. En las tres especies de micobacterias estudiadas, la resistencia contra la amikacina fue la menos frecuente. La identificación de las subespecies y los perfiles de sensibilidad permiten instaurar esquemas de tratamiento adecuados, especialmente en las micobacteriosis causadas por M. abscessus.
Descargas
Referencias bibliográficas
Falkinham J. Ecology of nontuberculous mycobacteria. Microorganisms. 2021;9:2262. https://doi.org/10.3390/microorganismos9112262
To K, Cao R, Yegiazaryan A, Owens J, Venketaraman V. General overview of nontuberculous mycobacteria opportunistic pathogens: Mycobacterium avium and Mycobacterium abscessus. J Clin Med. 2020;9:2541. https://doi.org/10.3390/jcm9082541
Akram SM, Rathish B, Saleh D. Mycobacterium chelonae infection. StatPearls (Internet). Treasure Island, FL: StatPearls Publishing; 2024.
Cobos-Trigueros N, Ateka O, Pitart C, Vila J. Macrólidos y cetólidos. Enferm Infecc Microbiol Clin. 2009;27:412-8. https://doi.org/10.1016/j.eimc.2009.06.002
Carreto L, González Y, Beltrán S. Enfermedad pulmonar causada por micobacterias no tuberculosas: diagnóstico, tratamiento y mecanismos de resistencia a los antimicrobianos. Neumol Cir Torax. 2021;80:141-53. https://doi.org/10.35366/100997
Da Mata O, Fernández S, Rodríguez M, Dewaard J. Mecanismos de resistencia en micobacterias de crecimiento rápido. Revista del Instituto Nacional de Higiene Rafael Rangel. 2016;47:95-124.
Esteban J, Navas E. Tratamiento de las infecciones producidas por micobacterias no tuberculosas. Enfermedades Infecciosas y Microbiología Clínica. 2018;36:586-92. https://doi.org/10.1016/j.eimc.2017.10.008
Jones R, Shier K, Master R, Bao J, Clark R. Current significance of the Mycobacterium chelonae-abscessus group. Diagn Microbiol Infect Dis. 2019;94:248-254. https://doi.org/10.1016/j.diagmicrobio.2019.01.021
Diel R, Lipman M, Hoefsloot W. High mortality in patients with Mycobacterium avium complex lung disease: A systematic review. BMC Infect Dis. 2018;18:206. https://doi.org/10.1186/s12879-018-3113-x
Johansen M, Herrmann J, Kremer L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat Rev Microbiol. 2020;18:392-407. https://doi.org/10.1038/s41579-020-0331-1
Hain Lifescience. GenoType NTM-DR™. Versión 1.0. Hardwiesenstraße, Nehren: Hain Lifescience; 2019.
Illouz M, Alcaraz M, Roquet-Banères F, Kremer L. Mycobacterium abscessus, un modèle de résistance aux différentes classes d’antibiotiques. Med Sci (Paris). 2021;37:993-1001. https://doi.org/10.1051/medsci/2021164
Máiz-Carro L, Barbero-Herranz E, Nieto-Royo R. Infecciones respiratorias por micobacterias no tuberculosas. Medicina Clínica. 2018;150:191-7. https://doi.org/10.1016/j.medcli.2017.07.010
Wang W, Yang J, Wu X, Wan B, Wang H, Yu F, et al. Difference in drug susceptibility distribution and clinical characteristics between Mycobacterium avium and Mycobacterium intracellulare lung diseases in Shangai, China. J. Med Microbiol. 2021;70. https://doi.org/10.1099/jmm.0.001358
Mora A, Giraldo S, Castillo A, Ferro B. Comportamiento clínico de la infección y enfermedad causada por micobacterias no tuberculosas en Latinoamérica: Revisión de alcance. Rev Peru Med Exp Salud Pública. 2021;38:318-25. https://doi.org/10.17843/rpmesp.2021.382.6108
Maurer F, Pohle P, Kernbach M, Sievert D, Hillemann D, Rupp J, et al. Differential drug susceptibility patterns of Mycobacterium chimaera and other members of the Mycobacterium avium-intracellulare complex. Clin Microbiol Infect. 2019;25:379 e1-7. https://doi.org/10.1016/j.cmi.2018.06.010
Hajikhani B, Nasiri M, Hosseini S, Khalili F, Karimi-Yazdi M, Hematian A, et al. Clofazimine susceptibility testing of Mycobacterium avium complex and Mycobacterium abscessus: A meta-analysis study. J Glob Antimicrob Resist. 2021;26:188-93. https://doi.org/10.1016/j.jgar.2021.06.002
Wetzstein N, Kohl T, Andres S, Schultze T, Geil A, Kim E, et al. Comparative analysis of phenotypic and genotypic antibiotic susceptibility patterns in Mycobacterium avium complex. Int J Infect Dis. 2020;93:320-8. https://doi.org/10.1016/j.ijid.2020.02.059
Litvinov V, Makarova M, Galkina K, Khachaturiants E, Krasnova M, Guntupova L, et al. Drug susceptibility testing of slowly growing non-tuberculous mycobacteria using slomyco testsystem. PLoS ONE. 2018:13:e0203108. https://doi.org/10.1371/journal.pone.0203108
Wassilew N, Hillemann D, Maurer F, Kohl T, Merker M, Brinkman F, et al. Evaluation of the GenoType® NTM DR for subspecies identification and determination of drug resistance in clinical M. abscessus isolates. Clin Microbiol. 2017;6:751-7. http://doi.org/10.4172/2327-5073.1000286
Ramírez A, Araque M. Patógenos emergentes multirresistentes: complejo Mycobacterium abscessus. Avan Biomed. 2017;6:203-15.
Bryant JM, Grogono DM, Rodriguez D, Everall I, Brown KP, Moreno P, et al. Emergence and spread of a human-transmissible multidrug-resistant non-tuberculous mycobacterium. Science. 2016;354:751-7. https://doi.org/10.1126/science.aaf8156
Weng Y, Huang C, Sy C, Wu K, Tsai H, Shin-Jung S, et al. Treatment for Mycobacterium abscessus complex-lung disease. J Formos Med Assoc. 2020;119:S58eS66. https://doi.org/10.1016/j.jfma.2020.05.028
Guo Q, Wei J, Zou W, Li Q, Qian X, Zhu Z. Antimicrobial susceptibility profiles of Mycobacterium abscessus complex isolates from respiratory specimens in Shanghai, China. J Glob Antimicrob Resist.. 2021;25:72-6. https://doi.org/10.1016/j.jgar.2021.02.024
Liu C, Song Y, He W, Liu D, He P, Bao J, et al. Non-tuberculous mycobacteria in China: Incidence and antimicrobial resistance spectrum from a nationwide survey. Infect Dis Poverty. 2021;10:59. https://doi.org/10.1186/s40249-021-00844-1
Ramírez A, Morcillo N, Imperiale B, Araque M, Waard J. Comparación y evaluación de métodos cuantitativos para determinar la susceptibilidad antimicrobiana de cepas del complejo Mycobacterium abscessus. Rev Cienc Salud. 2018;16:69-81. https://doi.org/10.12804/revistas.urosario.edu.co/revsalud/a.6491
Gu C, Zhao C, Hofstaedter C, Tebas P, Glaser L, Baldassano R, et al. Investigating hospital Mycobacterium chelonae infection using whole genome sequencing and hybrid assembly. PLoS ONE. 2020;15:e0236533. https://doi.org/10.1371/journal.pone.0236533
Özdemir H, Şimşek H, Çöplü N, Çağatay M. Percentages of drug resistance detected in non-tuberculous mycobacteria isolated from pulmonary samples. FLORA. 2020;25:372-82. https://doi.org/10.5578/flora.69616
Karami-Zarandi M, Bahador A, Gizaw-Feysia S, Kardan-Yamchi J, Hasan-Nejad M, Mosavari N, et al. Identification of non-tuberculosis mycobacteria by line probe assay and determination of drug resistance patterns of isolate in Iranian patients. Archives of Razi Institute. 2019;74:375-84. https://doi.org/10.22092/ari.2019.127144.1372
Algunos artículos similares:
- Alberto Tobón, Signos de peligro en el paciente con malaria , Biomédica: Vol. 29 Núm. 2 (2009)
- Oscar Fernando Herrán, María F. Ardila, Tipología de los consumidores de alcohol y sus factores determinantes en Bucaramanga, Colombia , Biomédica: Vol. 29 Núm. 4 (2009)
- María Imaz, Sonia Allassia, Mónica Aranibar, Alba Gunia, Susana Poggi, Ana Togneri, Lidia Wolff, Group of Implementation of Fluorescence, Rendimiento de la microscopía de fluorescencia LED para la detección de bacilos ácido-alcohol resistentes en muestras respiratorias en laboratorios periféricos de Argentina , Biomédica: Vol. 37 Núm. 2 (2017)
- Juan Bernardo Pinzón, Norma Cecilia Serrano, Luis Alfonso Díaz, Gerardo Mantilla, Harvey Mauricio Velasco, Luz Ximena Martínez, Paula Andrea Millán, Sandra Milena Acevedo, Daniel Moreno, Impacto de las nuevas definiciones en la prevalencia del síndrome metabólico en una población adulta de Bucaramanga, Colombia , Biomédica: Vol. 27 Núm. 2 (2007)
- Carlos A. Torres-Duque, Claudia Díaz, Leslie Vargas, Elsa María Serpa, Walter Mosquera, María Consuelo Garzón, Graciela Mejía, Luz Mary García, Liliana Andrea González, Claudia Marcela Castro, Wellman Ribón, Micobacteriosis diseminada con compromiso de válvula aórtica protésica: primer caso de Mycobacterium peregrinum de tipo III reportada en Colombia , Biomédica: Vol. 30 Núm. 3 (2010)
- Claudia Llerena, Santiago Elías Fadul, María Consuelo Garzón, Graciela Mejía, Dora Leticia Orjuela, Luz Mary García, Hilda Beatriz Álvarez, Fernando Javier Ruiz, Resistencia de Mycobacterium tuberculosis a los fármacos antituberculosos en menores de 15 años en Colombia , Biomédica: Vol. 30 Núm. 3 (2010)
- Claudia Lucía Colorado, Guillermo Sánchez, Martha Inírida Guerrero, Clara Inés León, Confiabilidad y concordancia de dos escalas de lectura de baciloscopias para clasificación y seguimiento del tratamiento con múltiples medicamentos de los pacientes con lepra , Biomédica: Vol. 31 Núm. 3 (2011)
- Juan Carlos Quintero, Andrés Felipe Londoño, Francisco J. Díaz, Piedad Agudelo-Flórez, Margarita Arboleda, Juan David Rodas, Ecoepidemiología de la infección por rickettsias en roedores, ectoparásitos y humanos en el noroeste de Antioquia, Colombia , Biomédica: Vol. 33 (2013): Suplemento 1, Fiebres hemorrágicas
- Marylin Hidalgo, Alvaro A. Faccini-Martínez, Gustavo Valbuena, Rickettsiosis transmitidas por garrapatas en las Américas: avances clínicos y epidemiológicos, y retos en el diagnóstico , Biomédica: Vol. 33 (2013): Suplemento 1, Fiebres hemorrágicas
- María C. Méndez, Cristina Domingo, Antonio Tenorio, Lissethe C. Pardo, Gloria J. Rey, Jairo A. Méndez, Desarrollo de un método de transcripción inversa seguida de reacción en cadena de la polimerasa para la detección del virus de la fiebre amarilla , Biomédica: Vol. 33 (2013): Suplemento 1, Fiebres hemorrágicas

Derechos de autor 2024 Biomédica

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Estadísticas de artículo | |
---|---|
Vistas de resúmenes | |
Vistas de PDF | |
Descargas de PDF | |
Vistas de HTML | |
Otras vistas |