Prevalence of resistance to macrolides and aminoglycosides in Mycobacterium avium, M. abscessus, and M. chelonae identified in the Laboratorio Nacional de Referencia of Colombia from 2018 to 2022
Abstract
Introduction. The Mycobacterium chelonae species and the M. avium and M. abscessus complexes are emerging pathogens that cause mycobacteriosis. Treatment depends
on the species and subspecies identified. The drugs of choice are macrolides and aminoglycosides. However, due to the resistance identified to these drugs, determining
the microbe’s sensitivity profile will allow clinicians to improve the understanding of the prognosis and evolution of these pathologies.
Objective. To describe the macrolide and aminoglycoside susceptibility profile of cultures identified by Colombia’s Laboratorio Nacional de Referencia de Mycobacteria from 2018 to 2022, as Mycobacterium avium complex, M. abscessus complex, and M. chelonae.
Materials and methods. This descriptive study exposes the susceptibility profile to macrolides and aminoglycosides of cultures identified as M. avium complex, M. abscessus complex, and M. chelonae using the GenoType® NTM-DR method.
Results. We identified 159 (47.3 %) cultures as M. avium complex, of which 154 (96.9 %) were sensitive to macrolides, and 5 (3.1 %) were resistant; all were sensitive to aminoglycosides. From the 125 (37.2 %) cultures identified as M. abscessus complex, 68 (54.4 %) were sensitive to macrolides, 57 (45.6 %) were resistant to aminoglycosides, and just one (0.8 %) showed resistance to aminoglycosides. The 52 cultures (15.5 %) identified as M. chelonae were sensitive to macrolides and aminoglycosides.
Conclusions. The three studied species of mycobacteria have the least resistance to Amikacin. Subspecies identification and their susceptibility profiles allow the establishment of appropriate treatment schemes, especially against M. abscessus.
Downloads
References
Falkinham J. Ecology of nontuberculous mycobacteria. Microorganisms. 2021;9:2262. https://doi.org/10.3390/microorganismos9112262
To K, Cao R, Yegiazaryan A, Owens J, Venketaraman V. General overview of nontuberculous mycobacteria opportunistic pathogens: Mycobacterium avium and Mycobacterium abscessus. J Clin Med. 2020;9:2541. https://doi.org/10.3390/jcm9082541
Akram SM, Rathish B, Saleh D. Mycobacterium chelonae infection. StatPearls (Internet). Treasure Island, FL: StatPearls Publishing; 2024.
Cobos-Trigueros N, Ateka O, Pitart C, Vila J. Macrólidos y cetólidos. Enferm Infecc Microbiol Clin. 2009;27:412-8. https://doi.org/10.1016/j.eimc.2009.06.002
Carreto L, González Y, Beltrán S. Enfermedad pulmonar causada por micobacterias no tuberculosas: diagnóstico, tratamiento y mecanismos de resistencia a los antimicrobianos. Neumol Cir Torax. 2021;80:141-53. https://doi.org/10.35366/100997
Da Mata O, Fernández S, Rodríguez M, Dewaard J. Mecanismos de resistencia en micobacterias de crecimiento rápido. Revista del Instituto Nacional de Higiene Rafael Rangel. 2016;47:95-124.
Esteban J, Navas E. Tratamiento de las infecciones producidas por micobacterias no tuberculosas. Enfermedades Infecciosas y Microbiología Clínica. 2018;36:586-92. https://doi.org/10.1016/j.eimc.2017.10.008
Jones R, Shier K, Master R, Bao J, Clark R. Current significance of the Mycobacterium chelonae-abscessus group. Diagn Microbiol Infect Dis. 2019;94:248-254. https://doi.org/10.1016/j.diagmicrobio.2019.01.021
Diel R, Lipman M, Hoefsloot W. High mortality in patients with Mycobacterium avium complex lung disease: A systematic review. BMC Infect Dis. 2018;18:206. https://doi.org/10.1186/s12879-018-3113-x
Johansen M, Herrmann J, Kremer L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat Rev Microbiol. 2020;18:392-407. https://doi.org/10.1038/s41579-020-0331-1
Hain Lifescience. GenoType NTM-DR™. Versión 1.0. Hardwiesenstraße, Nehren: Hain Lifescience; 2019.
Illouz M, Alcaraz M, Roquet-Banères F, Kremer L. Mycobacterium abscessus, un modèle de résistance aux différentes classes d’antibiotiques. Med Sci (Paris). 2021;37:993-1001. https://doi.org/10.1051/medsci/2021164
Máiz-Carro L, Barbero-Herranz E, Nieto-Royo R. Infecciones respiratorias por micobacterias no tuberculosas. Medicina Clínica. 2018;150:191-7. https://doi.org/10.1016/j.medcli.2017.07.010
Wang W, Yang J, Wu X, Wan B, Wang H, Yu F, et al. Difference in drug susceptibility distribution and clinical characteristics between Mycobacterium avium and Mycobacterium intracellulare lung diseases in Shangai, China. J. Med Microbiol. 2021;70. https://doi.org/10.1099/jmm.0.001358
Mora A, Giraldo S, Castillo A, Ferro B. Comportamiento clínico de la infección y enfermedad causada por micobacterias no tuberculosas en Latinoamérica: Revisión de alcance. Rev Peru Med Exp Salud Pública. 2021;38:318-25. https://doi.org/10.17843/rpmesp.2021.382.6108
Maurer F, Pohle P, Kernbach M, Sievert D, Hillemann D, Rupp J, et al. Differential drug susceptibility patterns of Mycobacterium chimaera and other members of the Mycobacterium avium-intracellulare complex. Clin Microbiol Infect. 2019;25:379 e1-7. https://doi.org/10.1016/j.cmi.2018.06.010
Hajikhani B, Nasiri M, Hosseini S, Khalili F, Karimi-Yazdi M, Hematian A, et al. Clofazimine susceptibility testing of Mycobacterium avium complex and Mycobacterium abscessus: A meta-analysis study. J Glob Antimicrob Resist. 2021;26:188-93. https://doi.org/10.1016/j.jgar.2021.06.002
Wetzstein N, Kohl T, Andres S, Schultze T, Geil A, Kim E, et al. Comparative analysis of phenotypic and genotypic antibiotic susceptibility patterns in Mycobacterium avium complex. Int J Infect Dis. 2020;93:320-8. https://doi.org/10.1016/j.ijid.2020.02.059
Litvinov V, Makarova M, Galkina K, Khachaturiants E, Krasnova M, Guntupova L, et al. Drug susceptibility testing of slowly growing non-tuberculous mycobacteria using slomyco testsystem. PLoS ONE. 2018:13:e0203108. https://doi.org/10.1371/journal.pone.0203108
Wassilew N, Hillemann D, Maurer F, Kohl T, Merker M, Brinkman F, et al. Evaluation of the GenoType® NTM DR for subspecies identification and determination of drug resistance in clinical M. abscessus isolates. Clin Microbiol. 2017;6:751-7. http://doi.org/10.4172/2327-5073.1000286
Ramírez A, Araque M. Patógenos emergentes multirresistentes: complejo Mycobacterium abscessus. Avan Biomed. 2017;6:203-15.
Bryant JM, Grogono DM, Rodriguez D, Everall I, Brown KP, Moreno P, et al. Emergence and spread of a human-transmissible multidrug-resistant non-tuberculous mycobacterium. Science. 2016;354:751-7. https://doi.org/10.1126/science.aaf8156
Weng Y, Huang C, Sy C, Wu K, Tsai H, Shin-Jung S, et al. Treatment for Mycobacterium abscessus complex-lung disease. J Formos Med Assoc. 2020;119:S58eS66. https://doi.org/10.1016/j.jfma.2020.05.028
Guo Q, Wei J, Zou W, Li Q, Qian X, Zhu Z. Antimicrobial susceptibility profiles of Mycobacterium abscessus complex isolates from respiratory specimens in Shanghai, China. J Glob Antimicrob Resist.. 2021;25:72-6. https://doi.org/10.1016/j.jgar.2021.02.024
Liu C, Song Y, He W, Liu D, He P, Bao J, et al. Non-tuberculous mycobacteria in China: Incidence and antimicrobial resistance spectrum from a nationwide survey. Infect Dis Poverty. 2021;10:59. https://doi.org/10.1186/s40249-021-00844-1
Ramírez A, Morcillo N, Imperiale B, Araque M, Waard J. Comparación y evaluación de métodos cuantitativos para determinar la susceptibilidad antimicrobiana de cepas del complejo Mycobacterium abscessus. Rev Cienc Salud. 2018;16:69-81. https://doi.org/10.12804/revistas.urosario.edu.co/revsalud/a.6491
Gu C, Zhao C, Hofstaedter C, Tebas P, Glaser L, Baldassano R, et al. Investigating hospital Mycobacterium chelonae infection using whole genome sequencing and hybrid assembly. PLoS ONE. 2020;15:e0236533. https://doi.org/10.1371/journal.pone.0236533
Özdemir H, Şimşek H, Çöplü N, Çağatay M. Percentages of drug resistance detected in non-tuberculous mycobacteria isolated from pulmonary samples. FLORA. 2020;25:372-82. https://doi.org/10.5578/flora.69616
Karami-Zarandi M, Bahador A, Gizaw-Feysia S, Kardan-Yamchi J, Hasan-Nejad M, Mosavari N, et al. Identification of non-tuberculosis mycobacteria by line probe assay and determination of drug resistance patterns of isolate in Iranian patients. Archives of Razi Institute. 2019;74:375-84. https://doi.org/10.22092/ari.2019.127144.1372
Some similar items:
- Alberto Tobón, Danger signs in the malaria patient , Biomedica: Vol. 29 No. 2 (2009)
- Oscar Fernando Herrán, María F. Ardila, Categories of alcohol consumers and the criteria for classification , Biomedica: Vol. 29 No. 4 (2009)
- María Imaz, Sonia Allassia, Mónica Aranibar, Alba Gunia, Susana Poggi, Ana Togneri, Lidia Wolff, Group of Implementation of Fluorescence, Performance of LED fluorescence microscopy for the detection of acid-fast bacilli from respiratory samples in peripheral laboratories in Argentina , Biomedica: Vol. 37 No. 2 (2017)
- Juan Bernardo Pinzón, Norma Cecilia Serrano, Luis Alfonso Díaz, Gerardo Mantilla, Harvey Mauricio Velasco, Luz Ximena Martínez, Paula Andrea Millán, Sandra Milena Acevedo, Daniel Moreno, Impact of the new definitions in the prevalence of the metabolic syndrome in an adult population at Bucaramanga, Colombia , Biomedica: Vol. 27 No. 2 (2007)
- Carlos A. Torres-Duque, Claudia Díaz, Leslie Vargas, Elsa María Serpa, Walter Mosquera, María Consuelo Garzón, Graciela Mejía, Luz Mary García, Liliana Andrea González, Claudia Marcela Castro, Wellman Ribón, Disseminated mycobacteriosis affecting a prosthetic aortic valve: first case of Mycobacterium peregrinum type III reported , Biomedica: Vol. 30 No. 3 (2010)
- Claudia Llerena, Santiago Elías Fadul, María Consuelo Garzón, Graciela Mejía, Dora Leticia Orjuela, Luz Mary García, Hilda Beatriz Álvarez, Fernando Javier Ruiz, Drug-resistant Mycobacterium tuberculosis in children under 15 years , Biomedica: Vol. 30 No. 3 (2010)
- Claudia Lucía Colorado, Guillermo Sánchez, Martha Inírida Guerrero, Clara Inés León, Reliability and agreement of two smear reading scales for classification and monitoring of multidrug therapy in leprosy patients , Biomedica: Vol. 31 No. 3 (2011)
- Juan Carlos Quintero, Andrés Felipe Londoño, Francisco J. Díaz, Piedad Agudelo-Flórez, Margarita Arboleda, Juan David Rodas, Ecoepidemiology of rickettsial infection in rodents, ectoparasites and humans in northeastern Antioquia, Colombia , Biomedica: Vol. 33 (2013): Suplemento 1, Fiebres hemorrágicas
- Marylin Hidalgo, Alvaro A. Faccini-Martínez, Gustavo Valbuena, Tick-borne rickettsioses in the Americas: clinical and epidemiological advances, and diagnostic challenges , Biomedica: Vol. 33 (2013): Suplemento 1, Fiebres hemorrágicas
- María C. Méndez, Cristina Domingo, Antonio Tenorio, Lissethe C. Pardo, Gloria J. Rey, Jairo A. Méndez, Development of a reverse transcription polymerase chain reaction method for yellow fever virus detection , Biomedica: Vol. 33 (2013): Suplemento 1, Fiebres hemorrágicas

Copyright (c) 2024 Biomedica

This work is licensed under a Creative Commons Attribution 4.0 International License.
Article metrics | |
---|---|
Abstract views | |
Galley vies | |
PDF Views | |
HTML views | |
Other views |