Health effects of wildfire PM2.5 in Latin American cities: A rapid systematic review and comparative synthesis

Jeadran Malagón-Rojas, Kai Chen, .

Keywords: wildfires, climate change, particulate matter, mortality, morbidity, Latin America

Abstract

Introduction. Wildfire activity is intensifying in Latin America due to climate and land-use changes, but the health impacts of wildfire-derived PM2.5 in urban areas remain poorly quantified and recognized.
Objective. To assess the evidence on wildfire-related PM2.5 and its association with mortality and morbidity in Latin American cities.
Materials and methods. We conducted a rapid systematic review and meta-analysis following PRISMA guidelines, using data from PubMed, Scopus, and Bireme. One reviewer independently screened 163 articles and extracted data from 14 eligible studies. A risk of bias assessment was conducted using the Newcastle-Ottawa Scale.
Results. Most studies were conducted in Brazil (n = 12) and used time-series or modelling designs to estimate health risks. Wildfire-specific PM2.5 exposure was associated with allcause, cardiovascular, and respiratory mortality. Reported effect estimates ranged from 1.7 to 7.7% increases in risk per 10 μg/m³ of exposure. Other studies assessed preterm birth, COVID-19 outcomes, and site-specific cancers. While two studies provided harmonized RR estimates for all-cause mortality, high heterogeneity and methodological differences prevented formal meta-analysis.
Conclusion. Wildfire smoke contributes measurably to premature mortality in Latin America, but current evidence is unevenly distributed across regions, time periods, and population subgroups. Studies rarely capture the disproportionate risks faced by indigenous and rural communities or the intraurban disparities linked to poverty and geography. Future research should focus on the health burden of morbidity linked to wildfire PM2.5.

Downloads

Download data is not yet available.

References

Taboada-Hermoza R, Martínez AG. “No one Is safe”: Agricultural burnings, wildfires and risk perception in two agropastoral communities in the Puna of Cusco, Perú [Preprint]. Preprints.org. 2025. Posted: December 3, 2024. Available at: https://doi.org/10.20944/preprints202412.0249.v1

Nunes KVR, Ignotti E, Hacon SDS. Circulatory disease mortality rates in the elderly and exposure to PM2.5 generated by biomass burning in the Brazilian Amazon in 2005. Cad Saúde Pública. 2013;29:589-98. https://doi.org/10.1590/s0102-311x2013000300016

Gutiérrez-Flores I, Panca M, Oyague E. Fire as driver of plant communities and soil properties changes in Puna grasslands in Southern Peruvian Andes. Environmental Challenges. 2024;17:101044. https://doi.org/10.1016/j.envc.2024.101044

Rosário NÉD, Sena ET, Yamasoe MA. South American 2020 regional smoke plume: Intercomparison with previous years, impact on solar radiation, and the role of Pantanal biomass burning season. Atmospheric Chemistry and Physics. 2022;22:15021-33. https://doi.org/10.5194/acp-22-15021-2022

Pivello VR. The use of fire in the cerrado and amazonian rainforests of Brazil: Past and present. Fire Ecol. 2011;7:24-39. https://doi.org/10.4996/fireecology.0701024

De Moura FR, Machado PDW, Ramires PF, Tavella RA, Carvalho H, Da Silva Júnior FMR. In the line of fire: Analyzing burning impacts on air pollution and air quality in an Amazonian city, Brazil. Atmospheric Pollution Research. 2024;15:102033. https://doi.org/10.1016/j.apr.2023.102033

Palmeiro-Silva Y, Llerena-Cayo C, Blanco-Villafuerte L, Rojas-Rueda D, Borchers Arriagada N, Vela-Clavo Z, et al. The 2024 South America ablaze: health impacts and policy imperatives for protecting population health in an era of wildfires. Lancet Reg Health Am. 2025;48:101160. https://10.1016/j.lana.2025.101160

National Academies of Sciences, Engineering, and Medicine; Division on Earth and Life Studies; Board on Chemical Sciences and Technology; Committee on the Chemistry of Urban Wildfires. Human exposures, health impacts, and mitigation. In: The chemistry of fires at the wildland-urban interface. National Academies Press (US); 2022. Accessed: June 10 2025. Available at: https://www.ncbi.nlm.nih.gov/books/NBK588649/

Mantilla OGF, Ortiz LR, Quintero KG, Acosta KVP, Pachón JE, Tangarife LSR, et al. Perception of air quality in Bogotá and surrounding municipalities. Congreso Colombiano y Conferencia Internacional de Calidad de Aire y Salud Pública. Bogotá: IEEE; 2021. p. 1-6. Accessed: June 10 2025. Available at: https://ieeexplore.ieee.org/document/9703417/

Chen G, Guo Y, Yue X, Tong S, Gasparrini A, Bell ML, et al. Mortality risk attributable to wildfire-related PM2-5 pollution: A global time series study in 749 locations. Lancet Planet Health. 2021;5:e579-87. https://doi.org/10.1016/S2542-5196(21)00200-X

Santín C, Moustakas A, Doerr SH. Searching the flames: Trends in global and regional public interest in wildfires. Environmental Science & Policy. 2023;146:151-61. https://doi.org/10.1016/j.envsci.2023.05.008

Jones MW, Veraverbeke S, Andela N, Doerr SH, Kolden C, Mataveli G, et al. Global rise in forest fire emissions linked to climate change in the extratropics. Science. 2024;386:eadl5889. https://doi.org/10.1126/science.adl5889

ACAPS: Data-driven humanitarian analysis | ACAPS. Colombia: Anticipatory impact of wildfires. Briefing note 20 February 2024. ReliefWeb. Accessed: June 10 2025. Available at: https://reliefweb.int/report/colombia/colombia-anticipatory-impact-wildfires-20-february-2024

Camacho Cortés DF. Análisis de la calidad del aire en Bogotá durante el periodo de incendios forestales en 2024 usando técnicas de teledetección (tesis). Bogotá: Universidad Distrital Francisco José de Caldas; 2025. Accessed: June 10 2025. Available at: http://hdl.handle.net/11349/95722

Lázaro LLB, Jacobi PR, Teixeira RLP. La crisis de los incendios en la región amazónica: la catástrofe ecológica de América del Sur y un llamado a la acción. Ambient Soc. 2024;27:e00006. https://doi.org/10.1590/1809-4422asoceditorialESP2024L5ED

Malagón-Rojas J. Protocol for a rapid review for wildfires, air quality and mortality in Latinamerica. Open Software Foundation. Date created: May 28 2025. Avalaible at: https://doi.org/10.17605/OSF.IO/6N3UF

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021;372:1-9. https://doi.org/10.1136/bmj.n71

Ye T, Xu R, Yue X, Chen G, Yu P, Coêlho MS, et al. Short-term exposure to wildfire-related PM2.5 increases mortality risks and burdens in Brazil. Nat Commun. 2022;13:7651. https://doi.org/10.1038/s41467-022-35326-x

Requia WJ, Papatheodorou S, Koutrakis P, Mukherjee R, Roig HL. Increased preterm birth following maternal wildfire smoke exposure in Brazil. Int J Hyg Environ Health. 2022:240:113901. https://doi.org/10.1016/j.ijheh.2021.113901h

Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan –a web and mobile app for systematic reviews. Syst Rev. 2016;5:210. https://doi.org/10.1186/s13643-016-0384-4

Lin CK, Chen ST. Estimation and application of population attributable fraction in ecological studies. Environ Health. 2019;18:52. https://doi.org/10.1186/s12940-019-0492-4

Wells G, Shea B, O’Connell D, Peterson J, Welch V, Losos V, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Accessed: June 10 2025. Available at: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

Wilkinson MD, Dumontier M, Aalbersberg IjJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:160018. https://doi.org/10.1038/sdata.2016.18

Ballesteros-González K, Sullivan AP, Morales-Betancourt R. Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. Sci Total Environ. 2020:739:139755. https://doi.org/10.1016/j.scitotenv.2020.139755

Wu Y, Li S, Xu R, Chen G, Yue X, Yu P, et al. Wildfire-related PM2.5 and health economic loss of mortality in Brazil. Environ Int. 2023:174:107906. https://doi.org/10.1016/j.envint.2023.107906

Yu P, Xu R, Li S, Yue X, Chen G, Ye T, et al. Exposure to wildfire-related PM2.5 and sites pecific cancer mortality in Brazil from 2010 to 2016: A retrospective study. PLoS Med. 2022;19:e1004103. https://doi.org/10.1371/journal.pmed.1004103

Ye T, Xu R, Yue X, Chen G, Yu P, Coêlho MSZS, et al. Short-term exposure to wildfirerelated PM2.5 increases mortality risks and burdens in Brazil. Nat Commun. 2022;13:7651. https://doi.org/10.1038/s41467-022-35326-x

Nawaz MO, Henze DK. Premature deaths in Brazil associated with long-term exposure to PM2.5 from Amazon fires between 2016 and 2019. GeoHealth. 2020;4:e2020GH000268. https://doi.org/10.1029/2020GH000268

Butt EW, Conibear L, Knote C, Spracklen DV. Large air quality and public health impacts due to Amazonian deforestation fires in 2019. Geohealth. 2021;5:e2021GH000429. https://doi.org/10.1029/2021GH000429

Requia WJ, Papatheodorou S, Koutrakis P, Mukherjee R, Roig HL. Increased preterm birth following maternal wildfire smoke exposure in Brazil. Int J Hyg Environ Health. 2022:240:113901. https://doi.org/10.1016/j.ijheh.2021.113901

Ye T, Guo Y, Chen G, Yue X, Xu R, Coêlho MDSZS, et al. Risk and burden of hospital admissions associated with wildfire-related PM2-5 in Brazil, 2000-15: A nationwide timeseries study. Lancet Planet Health. 2021;5:e599-e607. https://doi.org/10.1016/S2542-5196(21)00173-X

Gao Y, Huang W, Yu P, Xu R, Gasevic D, Yue X, et al. Wildfire-related PM2.5 and cardiovascular mortality: A difference-in-differences analysis in Brazil. Environ Pollut. 2024r;347:123810. https://doi.org/10.1016/j.envpol.2024.123810

Gonçalves KDS, Cirino GG, Costa MOD, Couto LDOD, Tortelote GG, Hacon SDS. The potential impact of PM2.5 on the covid-19 crisis in the Brazilian Amazon region. Rev Saúde Pública. 2023:57:67. https://doi.org/10.11606/s1518-8787.2023057005134

Lorenz C, Libonati R, Belém LBC, Oliveira A, Chiaravalloti RM, Nunes AV, et al. Wildfire and smoke association with COVID-19 cases in the Pantanal wetland, Brazil. Public Health. 2023;225:311-9. https://doi.org/10.1016/j.puhe.2023.10.032

Cobelo I, Castelhano FJ, Borge R, Roig HL, Adams M, Amini H, et al. The impact of wildfires on air pollution and health across land use categories in Brazil over a 16-year period. Environ Res. 2023;224:115522. https://doi.org/10.1016/j.envres.2023.115522

Chen K, Lu Y, Krumholz HM. Wildfires, compound extreme events, climate change, and cardiovascular health. J Am Coll Cardiol. 2025;85:1379-81. https://doi.org/10.1016/j.jacc.2025.01.009

Ballesteros-González K, Sullivan AP, Morales-Betancourt R. Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. Sci Total Environ. 2020:739:139755. https://doi.org/10.1016/j.scitotenv.2020.139755

Chen K, Ma Y, Bell ML, Yang W. Canadian Wildfire Smoke and Asthma Syndrome Emergency Department visits in New York City. JAMA. 2023;330:1385-7. https://doi.org/10.1001/jama.2023.18768

The City Paper Staff. Heat wave causes wildfires to rage in Bogotá’s Cerros Orientales. January 22, 2024. Accesed: June 19 2025. Available at: https://thecitypaperbogota.com/bogota/heat-wave-causes-wildfires-to-rage-in-bogotas-cerros-orientales/

Newbery E. What you need to know about the fires in Bogotá. The Bogotá Post. January 25, 2024. Accessed: June 19 2025. Available at: https://54.188.221.188/what-you-need-toknow-about-the-fires-in-bogota/52296/

How to Cite
1.
Malagón-Rojas J, Chen K. Health effects of wildfire PM2.5 in Latin American cities: A rapid systematic review and comparative synthesis. Biomed. [Internet]. 2025 Nov. 27 [cited 2026 Jan. 14];45(Sp. 2):41-55. Available from: https://revistabiomedicaorg.biteca.online/index.php/biomedica/article/view/8068

Some similar items:

Published
2025-11-27

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views

Funding data

Crossref Cited-by logo
Escanea para compartir
QR Code