Standardization and validation of a high-efficiency liquid chromatography with a diode-array detector (HPLC-DAD) for voriconazole blood level determination

Juan D. Zapata, Diego H. Cáceres, Luz E. Cano, Catalina de Bedout, Sinar D. Granada, Tonny W. Naranjo, .

Keywords: Antifungal agents, voriconazole, chromatography, high pressure liquid, drug monitoring

Abstract

Introduction. A specialized service for antifungal blood level determination is not available in Colombia. This service is essential for the proper follow-up of antifungal therapies.
Objective. To standardize and validate a simple, sensitive, and specific protocol based on high-performance liquid chromatography with a diode array detector for voriconazole blood level quantification.
Materials and methods. We used an Agilent HPLC™ series-1200 equipment with a UVdiode array detector with an analytical column Eclipse XDB-C18 and pre-column Eclipse-
XDB-C18 (Agilent). We used voriconazole as the primary control and posaconazole as an internal control. We performed the validation following the Food and Drug Administration (FDA) recommendations.
Results. The best chromatographic conditions were: Column temperature of 25°C, UV variable wavelength detection at 256 nm for voriconazole and 261 nm for posaconazole (internal standard); 50 μl of injection volume, 0,8 ml/min volume flow, 10 minutes of run time, and mobile phase of acetonitrile:water (60:40). Finally, retention times were 3.13 for voriconazole and 5.16 minutes for posaconazole. Quantification range varied from 0.125 μg/ml to 16 μg/ml.
Conclusion. The selectivity and chromatographic purity of the obtained signal, the detection limits, and the standardized quantification make this method an excellent tool for the therapeutic monitoring of patients treated with voriconazole.

Downloads

Download data is not yet available.
  • Juan D. Zapata Unidad de Micología Médica y Experimental, Corporación para Investigaciones Biológicas, Medellín, Colombia; Unidad de Investigación Clínica, Corporación para Investigaciones Biológicas, Medellín, Colombia https://orcid.org/0000-0002-1717-0095
  • Diego H. Cáceres Unidad de Micología Médica y Experimental, Corporación para Investigaciones Biológicas, Medellín, Colombia https://orcid.org/0000-0001-8749-9809
  • Luz E. Cano Unidad de Micología Médica y Experimental, Corporación para Investigaciones Biológicas, Medellín, Colombia; Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia https://orcid.org/0000-0001-5581-3015
  • Catalina de Bedout Unidad de Micología Médica y Experimental, Corporación para Investigaciones Biológicas, Medellín, Colombia https://orcid.org/0000-0003-1348-1053
  • Sinar D. Granada Unidad de Fitosanidad y Control Biológico, Corporación para Investigaciones Biológicas, Medellín, Colombia https://orcid.org/0000-0003-1499-3464
  • Tonny W. Naranjo Unidad de Micología Médica y Experimental, Corporación para Investigaciones Biológicas, Medellín, Colombia; Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellín, Colombia; Unidad de Biología de Sistemas, Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellín, Colombia https://orcid.org/0000-0003-4667-6391

References

Theuretzbacher U, Ihle F, Derendorf H. Pharmacokinetic/pharmacodynamic profile of voriconazole. Clin Pharmacokinet. 2006;45:649-63. https://doi.org/10.2165/00003088-200645070-00002

Gómez-López A. Antifungal therapeutic drug monitoring: Focus on drugs without a clear recommendation. Clin Microbiol Infect. 2020;26:1481-7. https://doi.org/10.1016/j.cmi.2020.05.037

Bellmann R, Smuszkiewicz P. Pharmacokinetics of antifungal drugs: Practical implications for optimized treatment of patients. Infection. 2017;45:737-79. https://doi.org/10.1007/s15010-017-1042-z

Andes D, Pascual A, Marchetti O. Antifungal therapeutic drug monitoring: Established and emerging indications. Antimicrob Agents Chemother. 2009;53:24-34. https://doi.org/10.1128/AAC.00705-08

Gintjee TJ, Donnelley MA, Thompson GR. Aspiring antifungals: Review of current antifungal pipeline developments. J Fungi (Basel). 2020;6:28. https://doi.org/10.3390/jof6010028

Cendejas-Bueno E, Rodríguez-Tudela JL, Cuenca-Estrella M, Gómez-López A. Development and validation of a fast HPLC/photodiode array detection method for the measurement of voriconazole in human serum samples. A reference laboratory experience. Enferm Infecc Microbiol Clin. 2013;31:23-8. https://doi.org/10.1016/j.eimc.2012.03.003

Food and Drug Administration - FDA. Guidance for industry bioanalytical method validation. 2018. Accessed: December 11, 2023. Available at: https://www.fda.gov/regulatoryinformation/search-fda-guidance-documents/bioanalytical-method-validation-guidanceindustry

Morikawa G, Fukami K, Moriiwa Y, Okazawa K, Yanagida A. Evaluation of the clinical and quantitative performance of a practical HPLC-UV platform for inhospital routine therapeutic drug monitoring of multiple drugs. J Pharm Health Care Sci.2023;9:29. https://doi.org/10.1186/s40780-023-00298-7

Sangsiriwut K, Chayakulkeeree M. Rapid high-performance liquid chromatographic assay for determination of voriconazole concentration in human plasma. J Med Assoc Thai. 2013;96(Suppl.2):S98-103.

Langman LJ, Boakye-Agyeman F. Measurement of voriconazole in serum and plasma. Clin Biochem. 2007;40:1378-85. https://doi.org/10.1016/j.clinbiochem.2007.07.024

How to Cite
1.
Zapata JD, Cáceres DH, Cano LE, de Bedout C, Granada SD, Naranjo TW. Standardization and validation of a high-efficiency liquid chromatography with a diode-array detector (HPLC-DAD) for voriconazole blood level determination. Biomed. [Internet]. 2024 Mar. 31 [cited 2026 Jan. 15];44(1):113-8. Available from: https://revistabiomedicaorg.biteca.online/index.php/biomedica/article/view/6959

Some similar items:

Published
2024-03-31
Section
Technical note

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
Crossref Cited-by logo
Escanea para compartir
QR Code