Concordance analysis of three diagnostic tests for malaria in the symptomatic population of Colombian endemic municipalities
Abstract
Introduction: Taking into account the difficulty of performing malaria microscopic diagnosis in rural areas, rapid diagnostic tests (RDT) are a good alternative, but it is important to verify their diagnostic performance.
Objective: To evaluate the diagnostic performance of the RDTs used in five Colombian departments by comparing them with the microscopic diagnosis and using PCR as the reference standard.
Materials and methods: Thick blood film and RDTs were used to diagnose symptomatic individuals; additionally, the filter paper was impregnated with blood for the molecular test.
Results: We included 314 samples whose percentage of positivity for malaria was 49% by PCR, 48% by microscopy and 46% by RDT; parasitemia ranged between 180 and 23,800 p/μL of blood. The concordance of the results from the microscopy units and those of the PCR (National Laboratory of Reference) was as follows: Cohen’s kappa coefficient, 0.975 (95% CI: 0.950-0.999); sensitivity, 97% (95% CI 95-100); specificity 100% (95% CI: 100-100), and kappa index of species, 0.958 (IC95%: 0.912-1.00).
The concordance between the Pf/Pv RDT (at the microscopy units) and the PCR (National Laboratory of Reference) was as follows: kappa coefficient, 0.878 (95% CI: 0.784-0.973); sensitivity, 94% (95% CI: 87-100); specificity, 95% (95% CI: 90-100), and kappa index of species, 1.0 (95% CI: 1.00-1.00).
The concordance between the Pf/Pan RDT versus PCR was: Cohen’s kappa coefficient, 0.920 (95 % CI: 0.865- 0.974); sensitivity, 94% (95% CI: 90-98); specificity, 99% (95% CI 95-100), and kappa index of species, 0.750 (IC95% 0,637-0,863).
Conclusion: The results of this study support the use of RDTs in Colombia; however, more training of the personnel is required to accurately differentiate Plasmodium species.
Downloads
References
Organización Panamericana de la Salud-Organización Mundial de la Salud. Situación de la Malaria en la Región de las Américas, 2000-2016. Fecha de consulta: 30 de diciembre de 2018. Disponible en: https://www.paho.org/hq/index.php?option=com_ docman&view=download&category_slug=datos-estadisticos-mapas-8110&alias=45343-situacion-malaria-region-americas-2000-2016-343&Itemid=270&lang=es
Salas D. Informe de evento malaria, Colombia, 2017. Fecha de consulta: 28 de diciembre del 2018. Disponible en: https://www.ins.gov.co/buscador-eventos/Informesdeevento/MALARIA%202017.pdf
World Health Organization. Policy brief on malaria diagnostics in low-transmission settings. 2014. Fecha de consulta: 3 de diciembre de 2018. Disponible en: https://www.who.int/malaria/publications/atoz/malaria-diagnosis-low-transmission-settings-sep2014.pdf?ua=1
Perandin F, Manca G, Piccolo A, Calderaro A, Galati L, Ricci L, et al. Identification of Plasmodium falciparum, P. vivax, P. ovale and P. malariae and detection of mixed infection in patients with imported malaria in Italy. New Microbiol. 2003;26:91-100.
Dharaiya CM, Faldu BR, Patel HL. Comparative evaluation of thin smear, thick smear and antigen detection test in the diagnosis of malaria. Indian J Pathol Oncol. 2017;4:434-6. https://doi.org/10.18231/2394-6792.2017.0093
World Health Organization. Malaria diagnosis: Memorandum from a WHO meeting. Bull World Health Organ. 1988;66:575-94.
Milne LM, Kyi MS, Chiodini PL, Warhurst DC. Accuracy of routine laboratory diagnosis of malaria in the United Kingdom. J Clin Pathol. 1994;47:740-2. https://doi.org/10.1136/jcp.47.8.740
Moody A. Rapid diagnostic test for malaria parasites. Clin Microbiol. 2002;15:66-78. https://doi.org/10.1128/CMR.15.1.66-78.2002
Ugah UI, Alo MN, Owolabi JO, Okata-Nwali OD, Ekejindu IM, Ibeth N, et al. Evaluation of the utility value of three diagnostic methods in the detection of malaria parasites in endemic area. Malar J. 2017;16:189. https://doi.org/10.1186/s12936-017-1838-4
Berzosa P, de Lucio A, Romay-Barja M, Herrador Z, González V, García L, et al. Comparison of three diagnostic methods (microscopy, RDT, and PCR) for the detection of malaria parasites in representative samples from Equatorial Guinea. Malar J. 2018;17:333. https://doi.org/10.1186/s12936-018-2481-4
Berhane A, Russom M, Bahta I, Hagos F, Ghirmai M, Uqubay S. Rapid diagnostic tests to detect Plasmodium falciparum infections in Eritrea: An investigation of reported false negative RDT results. Malar J. 2017;16:105. https://doi.org/10.1186/s12936-017-1752-9
Cortés LJ, Guerra AP. Guía para la vigilancia por laboratorio de parásitos del género Plasmodium spp. 2017. Fecha de consulta: 3 de diciembre de 2018. Disponible en: http://www.ins.gov.co/buscador-eventos/Informacin%20de%20laboratorio/Gu%C3%ADa%20Vigilancia%20por%20laboratorio%20Plasmodium%20spp.pdf
Snounou G, Viriyakosol S, Zhu X, Jarra W, Pinheiro I, Rosario V, et al. High sensivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol. 1993;61:315-20. https://doi.org/10.1016/0166-6851(93)90077-B
Singh B, Bobogare A, Cox-Singh J, Snounou G, Abdullah MS, Rahman HA. A genus- and species-specific nested polymerase chain reaction malaria detection assay for epidemiologic studies. Am J Trop Med Hyg. 1999;60:687-92.
Organización Panamericana de la Salud. Plan de acción para la eliminación de la malaria 2016-2020. Fecha de consulta: 12 de noviembre de 2018. Disponible en: https://www.paho.org/hq/dmdocuments/2016/CD55-13-s.pdf?ua=1
Organización Mundial de la Salud. Estrategia Técnica Mundial contra la Malaria 2016-2030. Fecha de consulta: 13 de noviembre de 2018. Disponible en: http://www.who.int/malaria/publications/atoz/9789241564991/es/
Gamboa D, Ho MF, Bendezu J, Torres K, Chiodini PL, Barnwell JW, et al. A large proportion of P. falciparum isolates in the Amazon region of Perú lack pfhrp2 and pfhrp3: Implications for malaria rapid diagnostic tests. PLoS ONE. 2010;5:e8091. https://doi.org/10.1371/journal.pone.0008091
Chiodini PL, Bowers K, Jorgensen P, Barnwell JW, Grady KK, Luchavez J, et al. The heat stability of Plasmodium lactate dehydrogenase-based and histidine-rich protein 2-based malaria rapid diagnostic tests. Trans R Soc Trop Med Hyg. 2007;101:331-7. https://doi.org/10.1016/j.trstmh.2006.09.007
Harvey SA, Jennings L, Chinyama M, Masaninga F, Mulholland K, Bell DR. Improving community health worker use of malaria rapid diagnostic tests in Zambia: Package instructions, job aid and job aid-plus-training. Malar J. 2008;7:160. https://doi.org/10.1186/1475-2875-7-160
Rennie W, Phetsouvanh R, Lupisan S, Vanisaveth V, Hongvanthong B, Phompida S, et al. Minimizing human error in malaria rapid diagnosis: Clarity of written instructions and health worker performance. Trans R Soc Trop Med Hyg. 2007;101:9-18. https://doi.org/10.1016/j.trstmh.2006.03.011
Bell DR, Wilson DW, Martin LB. False-positive results of a Plasmodium falciparum histidinerich protein 2-detecting malaria rapid diagnostic test due to high sensitivity in a community with fluctuating low parasite density. Am J Trop Med Hyg. 2005;73:199-203. https://doi.org/10.4269/ajtmh.2005.73.199
World Health Organization. Anuncio público dirigido a los fabricantes de pruebas de diagnóstico rápido, organismos de adquisición y programas nacionales de control del paludismo. Fecha de consulta: 19 de diciembre de 2018. Disponible en: http://www.who.int/malaria/news/2016/rdt-procurement-criteria/es/.2016
Montoya AE, Menco J, Osorio N, Zuluaga M, Duque J, Torres G, et al. Concordancia entre gota gruesa, inmunocromatografía y reacción en cadena de la polimerasa para el diagnóstico de malaria. Biomédica. 2008;28:252-61. https://doi.org/10.7705/biomedica.v28i2.96
Some similar items:
- Elizabeth Borrero, Gabriel Carrasquilla, Neal Alexander, Decentralization and health system reform: What is their impact on malaria incidence in Colombian municipalities? , Biomedica: Vol. 32 (2012): Suplemento 1, Malaria
- Sandra Milena Barrera, Manuel Alberto Pérez, Angélica Knudson, Rubén Santiago Nicholls, Ángela Patricia Guerra, Genotypic survery of Plasmodium falciparum based on the msp1, msp2 and glurp genes by multiplex PCR , Biomedica: Vol. 30 No. 4 (2010)
- Lorena I. Orjuela, Manuela Herrera, Holmes Erazo, Martha L. Quiñones, Anopheles species present in the department of Putumayo and their natural infectivity with Plasmodium , Biomedica: Vol. 33 No. 1 (2013)
- Pablo Chaparro, Edison Soto, Julio Padilla, Daniel Vargas, Estimation of the underreporting of malaria measurement in ten municipalities of the Pacific coast of Nariño during 2009 , Biomedica: Vol. 32 (2012): Suplemento 1, Malaria
- María Imaz, Sonia Allassia, Mónica Aranibar, Alba Gunia, Susana Poggi, Ana Togneri, Lidia Wolff, Group of Implementation of Fluorescence, Performance of LED fluorescence microscopy for the detection of acid-fast bacilli from respiratory samples in peripheral laboratories in Argentina , Biomedica: Vol. 37 No. 2 (2017)
- Margarita Arboleda, María Fernanda Pérez, Diana Fernández, Luz Yaned Usuga, Miler Meza, Clinical and laboratory profile of Plasmodium vivax malaria patients hospitalized in Apartadó, , Biomedica: Vol. 32 (2012): Suplemento 1, Malaria
- Nicolás Jaramillo, David Alonso Calle, Martha Lucía Quiñones, Holmes Francisco Erazo, Differentiation by geometric morphometrics among 11 Anopheles (Nyssorhynchus) in Colombia , Biomedica: Vol. 28 No. 3 (2008)
- Rosa Magdalena Uscátegui, Adriana M. Correa, Jaime Carmona-Fonseca, Changes in retinol, hemoglobin and ferritin concentrations in Colombian children with malaria , Biomedica: Vol. 29 No. 2 (2009)
- Amanda Maestre, Jaime Carmona-Fonseca, Amanda Maestre, Alta frecuencia de mutaciones puntuales en pfcrt de Plasmodium falciparum y emergencia de nuevos haplotipos mutantes en Colombia , Biomedica: Vol. 28 No. 4 (2008)
- Alberto Tobón, Danger signs in the malaria patient , Biomedica: Vol. 29 No. 2 (2009)

Article metrics | |
---|---|
Abstract views | |
Galley vies | |
PDF Views | |
HTML views | |
Other views |