Correlation between malaria incidence and prevalence of soil-transmitted helminths in Colombia: An ecologic evaluation

Carlos Andrés Valencia, Julián Alfredo Fernández, Zulma Milena Cucunubá, Patricia Reyes, Myriam Consuelo López, Sofía Duque, .

Keywords: malaria/epidemiology, helminthes, epidemiologic factors, ecological studies, Colombia

Abstract

Introduction. Recent studies have suggested an association between the soil-transmitted helminth infections and malaria incidence. However, published evidence is still insufficient and diverging. Since 1977, new ecologic studies have not been carried out to explore this association. Ecologic studies could explore this correlation on a population level, assessing its potential importance on public health.
Objectives. The aim of this evaluation is to explore the association between soil-transmitted helminths prevalence and malaria incidence, at an ecologic level in Colombia.
Materials and methods. Using data from the National Health Survey, which was carried out in 1980 in Colombia, we calculated Spearman correlation coefficients between the prevalence of: Ascaris lumbricoides, Trichuris trichiura and hookworm, with the 1980 malaria incidence data of the same year provided from the Colombian Malaria National Eradication Service. A robust regression analysis with least trimmed squares was performed.
Results. Falciparum malaria incidence and Ascaris lumbricoides prevalence had a low correlation (R2= 0.086) but this correlation was stronger into the clusters of towns with prevalence of Ascaris lumbricoides infection above 30% were only included (R2= 0.916).
Conclusion. This work showed an ecologic correlation in Colombia between malaria incidence and soil-transmitted helminths prevalence. This could suggest that either there is an association between these two groups of parasites, or could be explained by the presence of common structural determinants for both diseases.

Downloads

Download data is not yet available.
  • Carlos Andrés Valencia Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D.C., Colombia
  • Julián Alfredo Fernández Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D.C., Colombia
  • Zulma Milena Cucunubá Grupo de Parasitología, Instituto Nacional de Salud, Bogotá D.C., Colombia
  • Patricia Reyes Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D.C., Colombia
  • Myriam Consuelo López Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá D.C., Colombia
  • Sofía Duque Grupo de Parasitología, Instituto Nacional de Salud, Bogotá D.C., Colombia

References

1. World Health Organization. World malaria report 2005. Geneva: World Health Organization; 2005.
2. World Health Organization. Schistosomiasis and soil-transmitted helminth infections. Wkly Epidemiol Rec. 2006;81:145-64.
3. Petney TN, Andrews RH. Multiparasite communities in animals and humans: frequency, structure and pathogenic significance. Int J Parasitol. 1998;28:377-93.
4. Brooker S, Clements A, Hotez P, Hay S, Tatem A, Bundy D, et al. The co-distribution of Plasmodium and hookworm among African schoolchildren. Malar J. 2006;5:99.
5. Murray J, Murray A, Murray M, Murray C. The biological suppression of malaria: an ecological and nutritional interrelationship of a host and two parasites. Am J Clin Nutr. 1978;31:1363-6.
6. Nacher M, Singhasivanon P, Yimsamran S, Manibunyong W, Thanyavanich N, Wuthisen P, et al. Intestinal helminth infections are associated with increased incidence of Plasmodium falciparum malaria in Thailand. J Parasitol. 2002;88:55-8.
7. Spiegel A, Tall A, Raphenon G, Trape JF, Druilhe P. Increased frequency of malaria attacks in subjects co-infected by intestinal worms and Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg. 2003;97:198-9.
8. Hillier SD, Booth M, Muhangi L, Nkurunziza P, Kihembo M, Kakande M, et al. Malaria and helminth co-infection in a semi-urban population of pregnant women in Uganda. J Infect Dis. 2008;198:920-7.
9. Shapiro AE, Tukahebwa EM, Kasten J, Clarke SE, Magnussen P, Olsen A, et al. Epidemiology of helminth infections and their relationship to clinical malaria in southwest Uganda. Trans R Soc Trop Med Hyg. 2005;99:18-24.
10. Brutus L, Watier L, Briand V, Hanitrasoamampionona V, Razanatsoarilala H, Cot M. Parasitic co-infections: does Ascaris lumbricoides protect against Plasmodium falciparum infection? Am J Trop Med Hyg. 2006;75:194-8.
11. Brutus L, Watier L, Hanitrasoamampionona V, Razanatsoarilala H, Cot M. Confirmation of the protective effect of Ascaris lumbricoides on Plasmodium falciparum infection: results of a randomized trial in Madagascar. Am J Trop Med Hyg. 2007;77:1091-5.
12. Druilhe P. Worms and malaria: mixing up clinical entities can only lead to confusion. Trends Parasitol. 2006;22:351-2.
13. Mwangi TW, Bethony J, Brooker J. Malaria and helminths interaction in humans: an epidemiologic viewpoint. Ann Trop Med Parasitol. 2006;100:551-70.
14. Booth M. The role of residential location in apparent helminth and malaria associations. Trends Parasitol. 2006;22:359-62.
15. Basavaraju S, Schantz P. Soil-transmitted helminths and Plasmodium falciparum malaria: epidemiology, clinical manifestations, and the role of nitric oxide in malaria and geohelminth co-infection. Do worms have a protective role in P. falciparum infection? Mt Sinai J Med. 2006;73:1098-104.
16. Zambrano P. Informe final de malaria, semanas 1 a 52 en Colombia, 2005. Inf Quinc Epidemiol Nac. 2006;11:49-64.
17. Arciniegas E, Corredor A, Hernández CA. Parasitimo Intestinal. Bogotá D.C.: Instituto Nacional de Salud; 2000. p. 90.
18. Pearce N. The ecological fallacy strikes back. J Epidemiol Common Health. 2000;54:326-7.
19. Rose G. Sick individual and sick population. Am J Epidemiol. 2001;30:417-32.
20. Beck JM, Garcia A, Jartog EM, Shoner AL. Empleo de la técnica de recuento de huevos de Rithchie-Frick en el estudio de la efectividad del amtihelmíntico nopar (yoduro de stilbazium). Rev Fac Med Uni Nac Colomb. 1965;14:36.
21. Hartgers FC, Yazdanbakhsh M. Co-infection of helminths and malaria: modulation of the immune responses to malaria. Parasite Immunol. 2006;28:497-506.
22. van Riet E, Hartgers FC, Yazdanbakhsh M. Chronic helminth infections induce immunomodulation: Consequences and mechanisms. Immunobiology. 2007;212:475-90.
23. Naus CW, Jones FM, Satti MZ, Joseph S, Riley EM, Kimani G, et al. Serological responses among individuals in areas where both schistosomiasis and malaria are endemic: cross-reactivity between Schistosoma mansoni and Plasmodium falciparum. J Infect Dis. 2003;187:1272-82.
24. Hartnett W, Hartnett M. Molecular basis of worm immunomodulation. Parasite Immunol. 2006;28:535-48.
25. Mundry R, Fischer J. Use of statistical programs for nonparametric tests of small samples often leads to incorrect P values: examples from animal behaviour. Anim Behav. 1998;56:256-9.
26. Fernández JA, Idrovo AJ, Cucunubá ZM, Reyes P. Validez de los estudios de asociación entre geohelmintos e incidencia de malaria: ¿Deberían impactar las políticas de Salud? Rev Bras Epidemiol. 2008;11:365-78.
27. Morgenstern H. Ecologic studies in epidemiology: Concepts, principles and methods. Annu Rev Public Health. 1995;16:61-8.
28. Hotez PJ, Molyneux DH, Fenwick A, Ottesen E, Ehrlich Sachs S, Sachs JD. Incorporating a rapid-impact package for neglected tropical diseases with programs for HIV/AIDS, tuberculosis, malaria. PLoS Med. 2006;3:e102.
How to Cite
1.
Valencia CA, Fernández JA, Cucunubá ZM, Reyes P, López MC, Duque S. Correlation between malaria incidence and prevalence of soil-transmitted helminths in Colombia: An ecologic evaluation. Biomed. [Internet]. 2010 Dec. 1 [cited 2025 Apr. 5];30(4):501-8. Available from: https://revistabiomedicaorg.biteca.online/index.php/biomedica/article/view/288

Some similar items:

Published
2010-12-01
Section
Original articles

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
QR Code