Retos de la inteligencia artificial y sus posibles soluciones desde la perspectiva de un editorialista humano
Descargas
Referencias bibliográficas
López DM, Rico-Olarte C, Blobel B, Hullin C. Challenges and solutions for transforming health ecosystems in low- and middle-income countries through artificial intelligence. Front Med. 2022;9:958097. https://doi.org/10.3389/fmed.2022.9580
Johnson AEW, Bulgarelli L, Shen L, Gayles A, Shammout A, Horng S, et al. MIMIC-IV, a freely accessible electronic health record dataset. Sci Data. 2023;10:1. https://doi.org/10.1038/s41597-022-01899-x
Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019;366:447-53. https://doi.org/10.1126/science.aax2342
Celi LA, Cellini J, Charpignon ML, Dee EC, Dernoncourt F, Eber R, et al. Sources of bias in artificial intelligence that perpetuate healthcare disparities–A global review. PLOS Digit Health. 2022;1:e0000022. https://doi.org/10.1371/journal.pdig.0000022
Anonymous. Setting guidelines to report the use of IA in clinical trials. Nat Med. 2020;26:1311. https://doi.org/10.1038/s41591-020-1069-z
DECIDE-AI Steering Group. DECIDE-AI: New reporting guidelines to bridge the development-to-implementation gap in clinical artificial intelligence. Nat Med. 2021;27:186-7. https://doi.org/10.1038/s41591-021-01229-5

Derechos de autor 2023 Biomédica

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Estadísticas de artículo | |
---|---|
Vistas de resúmenes | |
Vistas de PDF | |
Descargas de PDF | |
Vistas de HTML | |
Otras vistas |